Prediction of Pyrolysis Kinetics of Biomass: New Insights from Artificial Intelligence-Based Modeling

被引:9
作者
Dong, Lei [1 ]
Wang, RanRan [2 ]
Liu, PeiDe [3 ]
Sarvazizi, Saeed [4 ,5 ]
机构
[1] Yantai Engn & Technol Coll, Dept Mech Engn, Yantai 264000, Shandong, Peoples R China
[2] Yantai Engn & Technol Coll, Aviat Serv Dept, Yantai 264000, Shandong, Peoples R China
[3] Yantai Lutong Precis Technol Co Ltd, Yantai 264000, Shandong, Peoples R China
[4] Petr Univ Technol PUT, Ahwaz Fac Petr Engn, Dept Petr Engn, Ahwaz, Iran
[5] Amirkabir Univ Technol, Dept Petr Engn, Tehran Polytech, Tehran, Iran
关键词
NEURAL-NETWORK; SEWAGE-SLUDGE; CO-PYROLYSIS; RICE HUSK; PARAMETERS; BEHAVIOR; GASIFICATION; SIMULATION;
D O I
10.1155/2022/6491745
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The present work introduces a quantitative structure-property relationship (QSPR)-based stochastic gradient boosting (SGB) decision tree framework for simulating and capturing of the thermal decomposition kinetics of biomass considering effective parameters of the ultimate analysis (such as carbon, hydrogen, oxygen, nitrogen, and sulfur content) and process heating rate. Through a total of 149 pyrolysis kinetics, this study developed an artificial model and subjected it to training and testing phases. The proposed model was validated using error analysis, sensitivity, regression, and outlier detection. The coefficient of determination (R-2) and mean relative error (%MRE) were calculated to be 0.993 and 4.354%, respectively, suggesting good performance in the estimation of the pyrolysis kinetic parameters. Also, the sensitivity results indicated the process heating rate to have the strongest effect on the model output with a relevancy factor of 0.43. Eventually, the proposed model showed superior performance compared to earlier frameworks.
引用
收藏
页数:8
相关论文
共 57 条
  • [1] Modeling CO2 absorption in aqueous solutions of DEA, MDEA, and DEA plus MDEA based on intelligent methods
    Abooali, Danial
    Soleimani, Reza
    Rezaei-Yazdi, Ali
    [J]. SEPARATION SCIENCE AND TECHNOLOGY, 2020, 55 (04) : 697 - 707
  • [2] Adeyemi N.A., 2012, INT ENERGY J, V12
  • [3] Describing biomass pyrolysis kinetics using a generic hybrid intelligent model: A critical stage in sustainable waste-oriented biore fi neries
    Aghbashlo, Mortaza
    Almasi, Fatemeh
    Jafari, Ali
    Nadian, Mohammad Hossein
    Soltanian, Salman
    Lam, Su Shiung
    Tabatabaei, Meisam
    [J]. RENEWABLE ENERGY, 2021, 170 : 81 - 91
  • [4] Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm
    Aghbashlo, Mortaza
    Tabatabaei, Meisam
    Nadian, Mohammad Hossein
    Davoodnia, Vandad
    Soltanian, Salman
    [J]. FUEL, 2019, 253 (189-198) : 189 - 198
  • [5] On the prediction of geochemical parameters (TOC, S1 and S2) by considering well log parameters using ANFIS and LSSVM strategies
    Ahangari D.
    Daneshfar R.
    Zakeri M.
    Ashoori S.
    Soulgani B.S.
    [J]. Petroleum, 2022, 8 (02) : 174 - 184
  • [6] Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential
    Ahmad, Muhammad Sajjad
    Mehmooda, Muhammad Aamer
    Taqvi, Syed Taha Haider
    Elkamel, Ali
    Liu, Chen-Guang
    Xu, Jianren
    Rahimuddin, Sawsan Abdulaziz
    Gull, Munazza
    [J]. BIORESOURCE TECHNOLOGY, 2017, 245 : 491 - 501
  • [7] An insight into the estimation of drilling fluid density at HPHT condition using PSO-, ICA-, and GA-LSSVM strategies
    Alizadeh, S. M.
    Alruyemi, Issam
    Daneshfar, Reza
    Mohammadi-Khanaposhtani, Mohammad
    Naseri, Maryam
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Allison GG, 2010, BIOTECH AGR FOREST, V66, P25, DOI 10.1007/978-3-642-13440-1_2
  • [9] Arslan A., 2020, ACTA ELECT MALAYSIA, V4, P28, DOI [10.26480/aem.01.2020.28.30, DOI 10.26480/AEM.01.2020.28.30]
  • [10] Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR
    Bi, Haobo
    Wang, Chengxin
    Lin, Qizhao
    Jiang, Xuedan
    Jiang, Chunlong
    Bao, Lin
    [J]. ENERGY, 2020, 213