Collective modes in multi-Weyl semimetals

被引:34
作者
Ahn, Seongjin [1 ,2 ]
Hwang, E. H. [3 ,4 ]
Min, Hongki [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea
[2] Seoul Natl Univ, Ctr Theoret Phys, Seoul 08826, South Korea
[3] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol, Suwon 440746, South Korea
[4] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
TOPOLOGICAL DIRAC SEMIMETAL; QUASI-PARTICLE INTERFERENCE; FERMI ARCS; DISCOVERY; PLASMONS; NODES; PHASE;
D O I
10.1038/srep34023
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate collective modes in three dimensional (3D) gapless multi-Weyl semimetals with anisotropic energy band dispersions (i.e., E similar to root k(vertical bar vertical bar)(2j) + k(z)(2) with a positive integer J). For comparison, we also consider the gapless semimetals with the isotropic band dispersions (i. e. E similar to k(J)). We calculate analytically long-wavelength plasma frequencies incorporating interband transitions and chiral properties of carriers. For both the isotropic and anisotropic cases, we find that interband transitions and chirality lead to the depolarization shift of plasma frequencies. For the isotropic parabolic band dispersion the long-wavelength plasmons do not decay via Landau damping, while for the higher-order band dispersions the long-wavelength plasmons experience damping below a critical density. For systems with the anisotropic dispersion the density dependence of the long-wavelength plasma frequency along the direction of non-linear dispersion behaves like that of the isotropic linear band model, while along the direction of linear dispersion it behaves like that of the isotropic non-linear model. Plasmons along both directions remain undamped over a broad range of densities due to the chirality induced depolarization shift. Our results provide a comprehensive picture of how band dispersion and chirality affect plasmon behaviors in 3D gapless chiral systems with the arbitrary band dispersion.
引用
收藏
页数:9
相关论文
共 59 条
[31]   Plasmon damping below the Landau regime: the role of defects in epitaxial graphene [J].
Langer, T. ;
Baringhaus, J. ;
Pfnuer, H. ;
Schumacher, H. W. ;
Tegenkamp, C. .
NEW JOURNAL OF PHYSICS, 2010, 12
[32]   Doping a Mott insulator: Physics of high-temperature superconductivity [J].
Lee, PA ;
Nagaosa, N ;
Wen, XG .
REVIEWS OF MODERN PHYSICS, 2006, 78 (01) :17-85
[33]  
Li C, 2015, NAT COMMUN, V6, DOI [10.1038/ncomms7608, 10.1038/ncomms10137]
[34]  
Li Q, 2016, NAT PHYS, V12, P550, DOI [10.1038/NPHYS3648, 10.1038/nphys3648]
[35]   Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets [J].
Liu, Yu ;
Willis, R. F. ;
Emtsev, K. V. ;
Seyller, Th. .
PHYSICAL REVIEW B, 2008, 78 (20)
[36]  
Liu ZK, 2014, NAT MATER, V13, P677, DOI [10.1038/NMAT3990, 10.1038/nmat3990]
[37]   Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi [J].
Liu, Z. K. ;
Zhou, B. ;
Zhang, Y. ;
Wang, Z. J. ;
Weng, H. M. ;
Prabhakaran, D. ;
Mo, S-K ;
Shen, Z. X. ;
Fang, Z. ;
Dai, X. ;
Hussain, Z. ;
Chen, Y. L. .
SCIENCE, 2014, 343 (6173) :864-867
[38]   Symmetry-protected topological photonic crystal in three dimensions [J].
Lu, Ling ;
Fang, Chen ;
Fu, Liang ;
Johnson, Steven G. ;
Joannopoulos, John D. ;
Soljacic, Marin .
NATURE PHYSICS, 2016, 12 (04) :337-U171
[39]   Experimental observation of Weyl points [J].
Lu, Ling ;
Wang, Zhiyu ;
Ye, Dexin ;
Ran, Lixin ;
Fu, Liang ;
Joannopoulos, John D. ;
Soljacic, Marin .
SCIENCE, 2015, 349 (6248) :622-624
[40]   Observation of Fermi-Arc Spin Texture in TaAs [J].
Lv, B. Q. ;
Muff, S. ;
Qian, T. ;
Song, Z. D. ;
Nie, S. M. ;
Xu, N. ;
Richard, P. ;
Matt, C. E. ;
Plumb, N. C. ;
Zhao, L. X. ;
Chen, G. F. ;
Fang, Z. ;
Dai, X. ;
Dil, J. H. ;
Mesot, J. ;
Shi, M. ;
Weng, H. M. ;
Ding, H. .
PHYSICAL REVIEW LETTERS, 2015, 115 (21)