Mechanistic insights into water transport in polymer electrolyte fuel cells with a variation of cell temperature and relative humidity of inlet gas elucidated by operando synchrotron X-ray radiography

被引:27
|
作者
Kato, Akihiko [1 ]
Kato, Satoru [1 ]
Yamaguchi, Satoshi [1 ]
Suzuki, Takahisa [1 ]
Nagai, Yasutaka [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
关键词
Polymer electrolyte fuel cells; Water transport; Operando; Synchrotron X-ray; Radiography; LIQUID-WATER; DIFFUSION LAYERS; IN-SITU; 2-PHASE FLOW; SATURATION; MANAGEMENT; MODEL; DISTRIBUTIONS; NAFION; PEMFC;
D O I
10.1016/j.jpowsour.2021.230951
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excessive liquid water in the gas diffusion layer (GDL) of polymer electrolyte fuel cells (PEFCs) is known to degrade their performance. PEFCs for automotive applications are required to work over a broad temperature range and over a wide range of relative humidity (RH) levels of the gas in their channels. Time-resolved operando synchrotron X-ray radiography was used to understand the effect of temperature and RH on the condensation and transport of water in PEFCs. The results show that the type of condensation and transport to the channel can be classified into four categories on the basis of the transient behavior of the liquid water distribution. The first category is concurrent liquid and vapor transport, the second is liquid-transport dominated, the third is vaporonly transport, and the fourth is accumulation-only near the ribs. We propose the possibility of oversaturation in the GDL, which is usually not considered in numerical calculations of the water distribution in PEFCs. We also show the possibility that experimental results are inconsistent with continuous water distribution in the in-plane direction, which is predicted under the assumption that the GDL structure is uniform and that capillary pressure transports liquid water in the GDL.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Liquid Water Visualization in the Pt-Loading Cathode Catalyst Layers of Polymer Electrolyte Fuel Cells Using Operando Synchrotron X-ray Radiography
    Yoshimune, Wataru
    Kato, Akihiko
    Hayakawa, Tetsuichiro
    Yamaguchi, Satoshi
    Kato, Satoru
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2024, 5 (10):
  • [2] Transient Liquid Water Distributions in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers Observed through In-Operando Synchrotron X-ray Radiography
    Banerjee, Rupak
    Ge, Nan
    Lee, Jongmin
    George, Michael G.
    Chevalier, Stephane
    Liu, Hang
    Shrestha, Pranay
    Muirhead, Daniel
    Bazylak, Aimy
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) : F154 - F162
  • [3] In operando synchrotron X-ray radiography studies of polymer electrolyte membrane water electrolyzers
    Hoeh, Michael A.
    Arlt, Tobias
    Manke, Ingo
    Banhart, John
    Fritz, David L.
    Maier, Wiebke
    Lehnert, Werner
    ELECTROCHEMISTRY COMMUNICATIONS, 2015, 55 : 55 - 59
  • [4] Operando X-ray radiography of liquid water distribution in 100 mm polymer electrolyte fuel cell channels
    Kato, Akihiko
    Yamaguchi, Satoshi
    Yoshimune, Wataru
    Isegawa, Kazuhisa
    Maeda, Masashi
    Hayashi, Daisuke
    Suzuki, Takahisa
    Kato, Satoru
    ELECTROCHEMISTRY COMMUNICATIONS, 2024, 165
  • [5] In situ Synchrotron X-ray Radiography Investigations of Water Transport in PEM Fuel Cells
    Manke, I.
    Hartnig, C.
    Kardjilov, N.
    Riesemeier, H.
    Goebbels, J.
    Kuhn, R.
    Krueger, P.
    Banhart, J.
    FUEL CELLS, 2010, 10 (01) : 26 - 34
  • [6] On the water transport mechanism through the microporous layers of operando polymer electrolyte fuel cells probed directly by X-ray tomographic microscopy
    Chen, Yen-Chun
    Dorenkamp, Tim
    Csoklich, Christoph
    Berger, Anne
    Marone, Federica
    Eller, Jens
    Schmidt, Thomas J.
    Buchi, Felix N.
    ENERGY ADVANCES, 2023, 2 (09): : 1447 - 1463
  • [7] Condensation model to reproduce experimentally observed liquid water distributions in gas diffusion layer for polymer electrolyte fuel cells with variation of cell temperature and relative humidity of inlet gas
    Inagaki, Masahide
    Kato, Akihiko
    Kato, Satoru
    Suzuki, Takahisa
    Yamaguchi, Satoshi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 58 : 14 - 27
  • [8] Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance
    Antonacci, P.
    Chevalier, S.
    Lee, J.
    Yip, R.
    Ge, N.
    Bazylak, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) : 16494 - 16502
  • [9] Calibrating the X-ray attenuation of liquid water and correcting sample movement artefacts during in operando synchrotron X-ray radiographic imaging of polymer electrolyte membrane fuel cells
    Ge, Nan
    Chevalier, Stephane
    Hinebaugh, James
    Yip, Ronnie
    Lee, Jongmin
    Antonacci, Patrick
    Kotaka, Toshikazu
    Tabuchi, Yuichiro
    Bazylak, Aimy
    JOURNAL OF SYNCHROTRON RADIATION, 2016, 23 : 590 - 599
  • [10] Membrane dehydration with increasing current density at high inlet gas relative humidity in polymer electrolyte membrane fuel cells
    Ge, N.
    Banerjee, R.
    Muirhead, D.
    Lee, J.
    Liu, H.
    Shrestha, P.
    Wong, A. K. C.
    Jankovic, J.
    Tam, M.
    Susac, D.
    Stumper, J.
    Bazylak, A.
    JOURNAL OF POWER SOURCES, 2019, 422 : 163 - 174