Localization of the Compact Invariant Sets of Nonautonomous Discrete-time Systems

被引:1
作者
Kanatnikov, A. N. [1 ]
Krishchenko, A. P. [1 ]
机构
[1] Bauman Moscow State Tech Univ, 2 Aya Baumanskaya Ul,5, Moscow 105005, Russia
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015) | 2016年 / 1738卷
关键词
discrete-time system; nonautonomous system; compact invariant set; localization; CYCLES;
D O I
10.1063/1.4952311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The localization method of the compact positively invariant sets for the nonautonomous discrete-time systems is proposed. The features of the corresponding localizing sets are formulated. By means of this method the localizing sets are obtained for the compact invariant sets of the nonautonomous variant of discrete-time Cathala system.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Global asymptotic stability analysis by the localization method of invariant compact sets
    Krishchenko, A. P.
    DIFFERENTIAL EQUATIONS, 2016, 52 (11) : 1403 - 1410
  • [32] Localization of compact invariant sets of a new nonlinear finance chaotic system
    Cai, Guoliang
    Yu, Haojie
    Li, Yuxiu
    NONLINEAR DYNAMICS, 2012, 69 (04) : 2269 - 2275
  • [33] Interval Observers For Discrete-time Systems
    Mazenc, Frederic
    Thach Ngoc Dinh
    Niculescu, Silviu Iulian
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 6755 - 6760
  • [34] Analysis and synthesis of discrete-time systems
    Bekey, G. A.
    SCIENTIA IRANICA, 2011, 18 (03) : 639 - 654
  • [36] Localization of an inhomogeneous discrete-time quantum walk on the line
    Norio Konno
    Quantum Information Processing, 2010, 9 : 405 - 418
  • [37] ON A POLYTOPE CONTAINING ALL COMPACT INVARIANT SETS FOR A CLASS OF NATURAL POLYNOMIAL HAMILTONIAN SYSTEMS
    Starkov, Konstantin E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (07): : 1953 - 1958
  • [38] Stabilization analysis for discrete-time systems with time delay
    Liu, Zixin
    Lue, Shu
    Zhong, Shouming
    Ye, Mao
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 2024 - 2035
  • [39] Chaotification of discrete-time systems using neurons
    Kwok, HS
    Tang, WKS
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (04): : 1405 - 1411
  • [40] Optimal robustness of passive discrete-time systems
    Mehrmann, V
    Van Dooren, P.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) : 1248 - 1269