PT-symmetric sinusoidal optical lattices at the symmetry-breaking threshold

被引:110
|
作者
Graefe, Eva-Maria [1 ]
Jones, H. F. [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2BZ, England
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 01期
关键词
D O I
10.1103/PhysRevA.84.013818
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The PT-symmetric potential V-0[cos(2 pi x/a) + i lambda sin(2 pi x/a)] has a completely real spectrum for lambda <= 1 and begins to develop complex eigenvalues for lambda > 1. At the symmetry-breaking threshold lambda = 1 some of the eigenvectors become degenerate, giving rise to a Jordan-block structure for each degenerate eigenvector. In general this is expected to result in a secular growth in the amplitude of the wave. However, it has been shown in a recent paper by Longhi, by numerical simulation and by the use of perturbation theory, that for a broad initial wave packet this growth is suppressed, and instead a saturation leading to a constant maximum amplitude is observed. We revisit this problem by explicitly constructing the Bloch wave functions and the associated Jordan functions and using the method of stationary states to find the dependence on the longitudinal distance z for a variety of different initial wave packets. This allows us to show in detail how the saturation of the linear growth arises from the close connection between the contributions of the Jordan functions and those of the neighboring Bloch waves.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Symmetry Breaking of Partially PT-Symmetric Solitons in Fractional Diffraction Systems
    Zhai Yuanbo
    Li Rujiang
    Li Pengfei
    ACTA OPTICA SINICA, 2024, 44 (05)
  • [32] Symmetry-breaking bifurcations on cubic lattices
    Callahan, TK
    Knobloch, E
    NONLINEARITY, 1997, 10 (05) : 1179 - 1216
  • [33] Low Threshold Optical Bistability in Aperiodic PT-Symmetric Lattices Composited with Fibonacci Sequence Dielectrics and Graphene
    Zhao, Dong
    Xu, Bin
    Guo, Huang
    Xu, Wuxiong
    Zhong, Dong
    Ke, Shaolin
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [34] Solitons in PT-symmetric nonlinear lattices
    Abdullaev, Fatkhulla Kh.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zezyulin, Dmitry A.
    PHYSICAL REVIEW A, 2011, 83 (04):
  • [35] Nonlinear dynamics in PT-symmetric lattices
    Kevrekidis, Panayotis G.
    Pelinovsky, Dmitry E.
    Tyugin, Dmitry Y.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (36)
  • [36] Discrete solitons in PT-symmetric lattices
    Konotop, V. V.
    Pelinovsky, D. E.
    Zezyulin, D. A.
    EPL, 2012, 100 (05)
  • [37] Topological insulators in PT-symmetric lattices
    Harari, Gal
    Plotnik, Yonatan
    Bandres, Miguel
    Lumer, Yaakov
    Rechtsman, Mikael. C.
    Segev, Mordechai
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [38] Solitons in PT-symmetric optical lattices with spatially periodic modulation of nonlinearity
    He, Yingji
    Zhu, Xing
    Mihalache, Dumitru
    Liu, Jinglin
    Chen, Zhanxu
    OPTICS COMMUNICATIONS, 2012, 285 (15) : 3320 - 3324
  • [39] The stability and collision dynamics of quantum droplets in PT-symmetric optical lattices
    Hu, Juncheng
    Wang, Hongcheng
    Chen, Guihua
    Zhang, Qingmao
    CHAOS SOLITONS & FRACTALS, 2025, 191
  • [40] Three-dimensional topological solitons in PT-symmetric optical lattices
    Kartashov, Yaroslav V.
    Hang, Chao
    Huang, Guoxiang
    Torner, Lluis
    OPTICA, 2016, 3 (10): : 1048 - 1055