Deep-inelastic electron-deuteron scattering with spectator nucleon tagging at the future Electron Ion Collider: Extracting free nucleon structure

被引:8
|
作者
Jentsch, Alexander [1 ]
Tu, Zhoudunming [1 ,2 ]
Weiss, Christian [3 ]
机构
[1] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
[2] Ctr Frontiers Nucl Sci, Stony Brook, NY 11794 USA
[3] Jefferson Lab, Theory Ctr, Newport News, VA 23606 USA
关键词
EMC;
D O I
10.1103/PhysRevC.104.065205
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Background: Deep-inelastic scattering (DIS) on the deuteron with spectator nucleon tagging represents a unique method for extracting the free neutron structure functions and exploring the nuclear modifications of bound protons and neutrons. The detection of the spectator (with typical momentum <100 MeV/c in the deuteron rest frame) controls the nuclear configuration during the DIS process and enables a differential analysis of nuclear effects. At the future Electron Ion Collider (EIC) such measurements will be performed using far-forward detectors. Purpose: Simulate deuteron DIS with proton or neutron tagging with the baseline EIC far-forward detector design. Quantify detector acceptance and resolution effects. Study feasibility of free nucleon structure extraction using pole extrapolation in the spectator momentum. Methods: DIS events with proton and neutron spectators are generated using the BeAGLE Monte Carlo generator. The spectator nucleon momentum is reconstructed including effects of detector acceptance and resolution. Pole extrapolation is performed under realistic conditions. The free nucleon structure extraction is validated by comparing with the input model. Results: Proton and neutron spectator detection is possible over the full transverse momentum range 0 < pT < 100 MeV/c needed for pole extrapolation. Resolution effects on the distributions before corrections are approximate to 10% for proton and approximate to 30% for neutron spectators. The overall accuracy of nucleon structure extraction is expected to be at the few-percent level. Conclusions: Free neutron structure extraction through proton tagging and pole extrapolation is feasible with the baseline EIC far-forward detector design. The corresponding extraction of free proton structure through neutron tagging provides a reference point for future studies of nuclear modifications.
引用
收藏
页数:30
相关论文
共 50 条