Quasisymmetries of Sierpinski carpet Julia sets

被引:19
作者
Bonk, Mario [1 ]
Lyubich, Mikhail [2 ]
Merenkov, Sergei [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
[3] CUNY City Coll, Dept Math, New York, NY 10031 USA
关键词
RATIONAL FUNCTIONS; LOCAL RIGIDITY; SCHOTTKY SETS; MAPS;
D O I
10.1016/j.aim.2016.06.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if xi a quasisymmetric homeomorphism between Sierpinski carpets that are Julia sets of postcriticallyfinite rational maps, then xi is the restriction of a Mobius transformation. This implies that the group of quasisymmetric homeomorphisms of a Sierpinski carpet Julia set of a postcritically-finite rational map is finite. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:383 / 422
页数:40
相关论文
共 32 条
[1]  
[Anonymous], 2009, Princeton Mathematical Series
[2]  
[Anonymous], 1992, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 1983, GEOMETRY DISCRETE GR
[4]  
[Anonymous], 1971, LECT NOTES MATH
[5]  
[Anonymous], 1993, QUASIREGULAR MAPPING
[6]  
Beardon A. F., 1991, Graduate Texts in Mathematics, V132
[7]   Sierpinski-curve Julia sets and singular perturbations of complex polynomials [J].
Blanchard, P ;
Devaney, RL ;
Look, DM ;
Seal, P ;
Shapiro, Y .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1047-1055
[8]   Quasisymmetric rigidity of square Sierpinski carpets [J].
Bonk, Mario ;
Merenkov, Sergei .
ANNALS OF MATHEMATICS, 2013, 177 (02) :591-643
[9]   Uniformization of SierpiA"ski carpets in the plane [J].
Bonk, Mario .
INVENTIONES MATHEMATICAE, 2011, 186 (03) :559-665
[10]  
Bonk M, 2009, AM J MATH, V131, P409