Generalized Master Equation for High-Energy Passive Mode-Locking: The Sinusoidal Ginzburg-Landau Equation

被引:31
作者
Ding, Edwin [1 ]
Shlizerman, Eli [1 ]
Kutz, J. Nathan [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Ginzburg-Landau equation; master mode-locking equation; mode-locked lasers; saturable absorption; solitons; TI-SAPPHIRE LASER; FEMTOSECOND FIBER LASER; NORMAL-DISPERSION; ADDITIVE-PULSE; LOCKED LASERS; PROPAGATION; GENERATION; STABILITY; OPERATION;
D O I
10.1109/JQE.2011.2112337
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A generalized master mode-locking model is presented to characterize the pulse evolution in a ring cavity laser passively mode-locked by a series of waveplates and a polarizer, and the equation is referred to as the sinusoidal Ginzburg-Landau equation (SGLE). The SGLE gives a better description of the cavity dynamics by accounting explicitly for the full periodic transmission generated by the waveplates and polarizer. Numerical comparisons with the full dynamics show that the SGLE is able to capture the essential mode-locking behaviors including the multi-pulsing instability observed in the laser cavity and does not have the drawbacks of the conventional master mode-locking theory, and the results are applicable to both anomalous and normal dispersions. The SGLE model supports high energy pulses that are not predicted by the master mode-locking theory, thus providing a platform for optimizing the laser performance.
引用
收藏
页码:705 / 714
页数:10
相关论文
共 44 条
[1]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[2]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[3]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[4]   Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers [J].
Bale, Brandon G. ;
Kutz, J. Nathan ;
Chong, Andy ;
Renninger, William H. ;
Wise, Frank W. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (10) :1763-1770
[5]   Variational method for mode-locked lasers [J].
Bale, Brandon G. ;
Kutz, J. Nathan .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (07) :1193-1202
[6]   Transition dynamics for multi-pulsing in mode-locked lasers [J].
Bale, Brandon G. ;
Kieu, Khanh ;
Kutz, J. Nathan ;
Wise, Frank .
OPTICS EXPRESS, 2009, 17 (25) :23137-23146
[7]   Properties of normal-dispersion femtosecond fiber lasers [J].
Chong, Andy ;
Renninger, William H. ;
Wise, Frank W. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (02) :140-148
[8]   All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ [J].
Chong, Andy ;
Renninger, William H. ;
Wise, Frank W. .
OPTICS LETTERS, 2007, 32 (16) :2408-2410
[9]   All-normal-dispersion femtosecond fiber laser [J].
Chong, Andy ;
Buckley, Joel ;
Renninger, Will ;
Wise, Frank .
OPTICS EXPRESS, 2006, 14 (21) :10095-10100
[10]   Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser [J].
Collings, BC ;
Bergman, K ;
Knox, WH .
OPTICS LETTERS, 1998, 23 (02) :123-125