Spike-timing dependent plasticity as a mechanism for ocular dominance shift

被引:1
作者
Siegler, BA
Ritchey, M
Rubin, J [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Ctr Neural Basis Cognit, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Ctr Neurosci, Pittsburgh, PA 15260 USA
[4] Univ Notre Dame, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
spike-timing dependent plasticity; ocular dominance; monocular deprivation; monocular inactivation;
D O I
10.1016/j.neucom.2004.10.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spike-timing dependent plasticity (STDP) has been implicated in visual cortex modification. We created a model of ocular dominance (OD) shift based on STDP rules and compared it to experimental results. Although STDP proved to be a powerful mechanism for OD shift in our model, we found that it was unable to account for more subtle effects of monocular deprivation. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 50 条
[21]   Dynamically sliding threshold model reproduces the initial-strength dependence of spike-timing dependent synaptic plasticity [J].
Kurashige, Hiroki ;
Sakai, Yutaka .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2007, 76 (11)
[22]   Spike-timing dependent plasticity with release probability supported to eliminate weight boundaries and to balance the excitation of Hebbian neurons [J].
Fernando, Subha ;
Yamada, Koichi .
6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS, AND THE 13TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS, 2012, :1052-1058
[23]   Consciousness driven Spike Timing Dependent Plasticity [J].
Yadav, Sushant ;
Chaudhary, Santosh ;
Kumar, Rajesh ;
Nkomozepi, Pilani .
EXPERT SYSTEMS WITH APPLICATIONS, 2025, 269
[24]   Electroforming-free BiFeO3 switches for neuromorphic computing Spike-timing dependent plasticity (STDP) and cycle-number dependent plasticity (CNDP) [J].
Kiani, Mahdi ;
Du, Nan ;
Buerger, Danilo ;
Skorupa, Ilona ;
Ecke, Ramona ;
Schulz, Stefan E. ;
Schmidt, Heidemarie .
2019 26TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS), 2019, :682-686
[25]   Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware [J].
Pfeil, Thomas ;
Potjans, Tobias C. ;
Schrader, Sven ;
Potjans, Wiebke ;
Schemmel, Johannes ;
Diesmann, Markus ;
Meier, Karlheinz .
FRONTIERS IN NEUROSCIENCE, 2012, 6 :1-19
[26]   Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks [J].
Garrido, Jesus A. ;
Luque, Niceto R. ;
Tolu, Silvia ;
D'Angelo, Egidio .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2016, 26 (05)
[27]   TripleBrain: A Compact Neuromorphic Hardware Core With Fast On-Chip Self-Organizing and Reinforcement Spike-Timing Dependent Plasticity [J].
Wang, Haibing ;
He, Zhen ;
Wang, Tengxiao ;
He, Junxian ;
Zhou, Xichuan ;
Wang, Ying ;
Liu, Liyuan ;
Wu, Nanjian ;
Tian, Min ;
Shi, Cong .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2022, 16 (04) :636-650
[28]   Synaptic plasticity onto inhibitory neurons as a mechanism for ocular dominance plasticity [J].
Bono, Jacopo ;
Clopath, Claudia .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (03)
[29]   Memristor emulator with spike-timing-dependent-plasticity [J].
Babacan, Yunus ;
Kacar, Firat .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 73 :16-22
[30]   Non-spike timing-dependent plasticity learning mechanism for memristive neural networks [J].
Tang, Zhiri ;
Chen, Yanhua ;
Wang, Zhihua ;
Hu, Ruihan ;
Wu, Edmond Q. .
APPLIED INTELLIGENCE, 2021, 51 (06) :3684-3695