Method of investigation of deformations of solids of incompressible materials

被引:4
作者
Abdrakhmanova, A. I. [1 ]
Garifullin, I. R. [1 ]
Sultanov, L. U. [1 ]
机构
[1] Kazan Fed Univ, 18 Kremlyovskaya St, Kazan 420008, Russia
来源
11TH INTERNATIONAL CONFERENCE ON MESH METHODS FOR BOUNDRY-VALUE PROBLEMS AND APPLICATIONS | 2016年 / 158卷
基金
俄罗斯科学基金会;
关键词
D O I
10.1088/1757-899X/158/1/012001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this work is development mathematical models, algorithm for the investigation stress-strain state of elastic solids, taking into account the incompressibility materials. The constitutive equations are received using a potential energy of deformations. The system of the linear algebraic equations is received by linearization of a resolving equation. The penalty method is applied for a modelling of the incompressibility of the material. The finite element method is used for numerical solution of the problems.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Decomposition of Large Incompressible Deformations [J].
Q. -C. He ;
Q. -S. Zheng .
Journal of Elasticity, 2006, 85 :175-187
[32]   Decomposition of large incompressible deformations [J].
He, Q. -C. ;
Zheng, Q. -S. .
JOURNAL OF ELASTICITY, 2006, 85 (03) :175-187
[33]   A stable, meshfree, nodal integration method for nearly incompressible solids [J].
Elmer, William ;
Chen, J. S. ;
Puso, Mike ;
Taciroglu, Ertugrul .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2012, 51 :81-85
[34]   Review of the modified finite particle method and application to incompressible solids [J].
Asprone, D. ;
Auricchio, F. ;
Montanino, A. ;
Reali, A. .
INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2015, 9 (03) :235-248
[35]   On the deformations of the incompressible Euler equations [J].
Dongho Chae .
Mathematische Zeitschrift, 2007, 257 :563-580
[36]   DYNAMICALLY POSSIBLE FINITE DEFORMATIONS OF ISOTROPIC, INCOMPRESSIBLE, ELASTIC-INELASTIC SOLIDS WITH TEMPERATURE INDEPENDENT RESPONSE [J].
KRATOCHVIL, J .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1972, 23 (06) :949-959
[37]   Kearsley-type instabilities in finite deformations of transversely isotropic and incompressible hyperelastic materials [J].
Li, Qian ;
Dillard, David A. ;
Batra, Romesh C. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 196 :171-178
[38]   The effects of compressibility on inhomogeneous deformations for a class of almost incompressible isotropic nonlinearly elastic materials [J].
Horgan, C. O. ;
Murphy, J. G. .
JOURNAL OF ELASTICITY, 2007, 88 (03) :207-221
[39]   The Effects of Compressibility on Inhomogeneous Deformations for a Class of Almost Incompressible Isotropic Nonlinearly Elastic Materials [J].
C. O. Horgan ;
J. G. Murphy .
Journal of Elasticity, 2007, 88 :207-221
[40]   Projection method in material point method for modeling incompressible materials [J].
Kularathna, Shyamini ;
Soga, Kenichi .
PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON THE MATERIAL POINT METHOD (MPM 2017), 2017, 175 :57-64