A Transfer Entropy Method to Quantify Causality in Stochastic Nonlinear Systems

被引:4
作者
Gao, Jiaqi [1 ]
Tulsyan, Aditya [2 ]
Yang, Fan [3 ]
Gopaluni, Bhushan [4 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Tsinghua Univ, Dept Automat, Tsinghua Lab Informat Sci & Technol, Beijing 100084, Peoples R China
[4] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 07期
基金
中国国家自然科学基金;
关键词
Causality; transfer entropy; particle filters; state-space models;
D O I
10.1016/j.ifacol.2016.07.384
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In modern chemical processes, identification of the process variable connectivity and their topology is vital for maintaining the operational safety. As a general information theoretic method, transfer entropy can analyze the causality between two Variables based on estimation of conditional probability density functions. Transfer entropy estimation is typically a data driven method, however, the associated high computational complexity mid poor accuracy are not acceptable in real applications. Using a nonlinear stochastic state-space model in conjunction with particle filters, a novel transfer entropy estimation method is proposed. The proposed approach requires less data, is fast and accurate. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:454 / 459
页数:6
相关论文
共 10 条
[1]   Fault detection and isolation in stochastic non-linear state-space models using particle filters [J].
Alrowaie, F. ;
Gopaluni, R. B. ;
Kwok, K. E. .
CONTROL ENGINEERING PRACTICE, 2012, 20 (10) :1016-1032
[2]   Finding the direction of disturbance propagation in a chemical process using transfer entropy [J].
Bauer, Margret ;
Cox, John W. ;
Caveness, Michelle H. ;
Downs, James J. ;
Thornhill, Nina F. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2007, 15 (01) :12-21
[3]   Direct Causality Detection via the Transfer Entropy Approach [J].
Duan, Ping ;
Yang, Fan ;
Chen, Tongwen ;
Shah, Sirish L. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (06) :2052-2066
[4]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[5]  
Koutsoukos X., 2002, P INT S MATH THEOR N
[6]  
Noyes J., 2000, COMPUT CONTROL ENG J, V11, P52
[7]   Measuring information transfer [J].
Schreiber, T .
PHYSICAL REVIEW LETTERS, 2000, 85 (02) :461-464
[8]  
Silverman, 2018, DENSITY ESTIMATION S, DOI 10.1201/9781315140919
[9]   PCA-SDG based process monitoring and fault diagnosis [J].
Vedam, H ;
Venkatasubramanian, V .
CONTROL ENGINEERING PRACTICE, 1999, 7 (07) :903-917
[10]  
Yang F, 2014, SPRINGERBR APPL SCI, P1, DOI 10.1007/978-3-319-05380-6