Nonlinear anisotropic elasticity for laminate composites

被引:21
|
作者
Lomakin, E. V. [1 ]
Fedulov, B. N. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119991, Russia
关键词
Structural composites; Non-linear behavior; Anisotropy; Stress state dependence; Constitutive relations; Non-linear shear diagram; FIBER-COMPOSITES; STRESS STATE; SHEAR DEFORMATION; BEHAVIOR; STRENGTH; FAILURE; DAMAGE; MODELS; PLY;
D O I
10.1007/s11012-015-0104-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Many structural materials, which are preferred for the developing of advanced constructions, are inhomogeneous ones. These materials have complex internal structure and properties, which make them to be more effectual in the solution of special problems required for development engineering. On the other hand, in consequence of this internal heterogeneity, they exhibit complex mechanical properties. In this work, the analysis of some features of the behavior of composite materials under different loading conditions is carried out. The dependence of nonlinear elastic response of composite materials on loading conditions is studied. Several approaches to model elastic nonlinearity such as different stiffness for particular type of loadings and nonlinear shear stress-strain relations are considered. Instead of a set of constant anisotropy coefficients, the anisotropy functions are introduced. Eventually, the combined constitutive relations are proposed to describe simultaneously two types of physical nonlinearities, one of which characterizes the nonlinearity of shear stress-strain dependency and another one determines the stress state susceptibility of material properties. The method for experimental determination of material's functions is proposed. Quite satisfactory correlation between the theoretical dependencies and the results of experimental studies is demonstrated.
引用
收藏
页码:1527 / 1535
页数:9
相关论文
共 50 条
  • [41] Cofired Magnetoelectric Laminate Composites
    Park, Chee-Sung
    Priya, Shashank
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (04) : 1087 - 1095
  • [42] Magnetoelectric laminate composites: An overview
    Zhai, Junyi
    Xing, Zengping
    Dong, Shuxiang
    Li, Jiefang
    Viehland, Dwight
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (02) : 351 - 358
  • [43] Some general optimal design results using anisotropic, power law nonlinear elasticity
    Pedersen, P
    STRUCTURAL OPTIMIZATION, 1998, 15 (02): : 73 - 80
  • [44] Some general optimal design results using anisotropic, power law nonlinear elasticity
    P. Podersen
    Structural optimization, 1998, 15 (2) : 73 - 80
  • [45] The topological derivative in anisotropic elasticity
    Bonnet, Marc
    Delgado, Gabriel
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2013, 66 (04): : 557 - 586
  • [46] Periodic inclusions in anisotropic elasticity
    Hu, YT
    Huang, YY
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1996, 34 (14) : 1623 - 1630
  • [47] Representation of solutions of anisotropic elasticity
    Mitin, SP
    DIFFERENTIAL EQUATIONS, 1998, 34 (01) : 95 - 102
  • [48] DISLOCATIONS AND CRACKS IN ANISOTROPIC ELASTICITY
    STROH, AN
    PHILOSOPHICAL MAGAZINE, 1958, 3 (30): : 625 - &
  • [49] On invariants of anisotropic elasticity constants
    Wang, Min-Zhong
    Zhao, Bao-Sheng
    Chinese Journal of Mechanics Series A (English Edition), 2003, 19 (01): : 185 - 190
  • [50] Spectral decomposition of anisotropic elasticity
    P. S. Theocaris
    D. P. Sokolis
    Acta Mechanica, 2001, 150 : 237 - 261