Analysis of Pressure-Robust Embedded-Hybridized Discontinuous Galerkin Methods for the Stokes Problem Under Minimal Regularity

被引:6
作者
Baier-Reinio, Aaron [1 ]
Rhebergen, Sander [1 ]
Wells, Garth N. [2 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
基金
加拿大自然科学与工程研究理事会;
关键词
Stokes equations; Minimal regularity; Embedded; Hybridized; Discontinuous Galerkin finite element methods; Pressure-robust; FINITE-ELEMENT METHODS; DIVERGENCE; APPROXIMATION; INTERPOLATION; EQUATIONS; DOMAINS;
D O I
10.1007/s10915-022-01889-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present analysis of two lowest-order hybridizable discontinuous Galerkin methods for the Stokes problem, while making only minimal regularity assumptions on the exact solution. The methods under consideration have previously been shown to produce H (div)-conforming and divergence-free approximate velocities. Using these properties, we derive a priori error estimates for the velocity that are independent of the pressure. These error estimates, which assume only H1+s-regularity of the exact velocity fields for any s is an element of [0, 1], are optimal in a discrete energy norm. Error estimates for the velocity and pressure in the L-2-norm are also derived in this minimal regularity setting. Our theoretical findings are supported by numerical computations.
引用
收藏
页数:25
相关论文
共 38 条
[1]  
[Anonymous], 2019, NUMERICAL MATH ADV A, DOI 10.1007/978-3-319-96415
[2]  
Arnold D.N., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[3]   Error analysis of discontinuous Galerkin methods for the Stokes problem under minimal regularity [J].
Badia, S. ;
Codina, R. ;
Gudi, T. ;
Guzman, J. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (02) :800-819
[4]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[5]  
Boffi Daniele, 2013, Springer Series in Computational Mathematics, V44, DOI DOI 10.1007/978-3-642-40763-5
[6]  
Brenner S.C., 2008, MATH THEORY FINITE E, DOI [10.1007/978-0-387-75934-0, DOI 10.1007/978-0-387-75934-0]
[7]   Geometric Singularities of the Stokes Problem [J].
Chorfi, Nejmeddine .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[8]   A note on discontinuous galerkin divergence-free solutions of the navier-stokes equations [J].
Cockburn, Bernardo ;
Kanschat, Guido ;
Schotzau, Dominik .
JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) :61-73
[9]   DIVERGENCE-CONFORMING HDG METHODS FOR STOKES FLOWS [J].
Cockburn, Bernardo ;
Sayas, Francisco-Javier .
MATHEMATICS OF COMPUTATION, 2014, 83 (288) :1571-1598
[10]   UNIFIED HYBRIDIZATION OF DISCONTINUOUS GALERKIN, MIXED, AND CONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep ;
Lazarov, Raytcho .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1319-1365