Wave front set at infinity and hyperbolic linear operators with multiple characteristics

被引:35
作者
Coriasco, S
Maniccia, L
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
关键词
wave front set; hyperbolic Cauchy problems; globally defined pseudodifferential and Fourier integral operators;
D O I
10.1023/A:1026241614722
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a notion of wave front set which allows us to control the behaviour 'at infinity' of temperate distributions. We obtain the microlocality and microellipticity properties with respect to a class of global pseudodifferential operators and a propagation theorem for the corresponding class of Fourier Integral Operators. Through these results, we prove an adapted global version of the classical theorem concerning the singularities of solutions of hyperbolic Cauchy problems for linear operators with multiple characteristics of constant multiplicities. Finally, we make a comparison with the scattering wave front set introduced by Melrose.
引用
收藏
页码:375 / 400
页数:26
相关论文
共 32 条
[1]  
[Anonymous], NEW TRENDS MICROLOCA
[2]  
[Anonymous], 1984, ASTERISQUE
[3]   PROPAGATION OF SINGULARITIES FOR A CLASS OF OPERATORS WITH MULTIPLE CHARACTERISTICS AND LOCAL RESOBULITY [J].
CHAZARAI.J .
ANNALES DE L INSTITUT FOURIER, 1974, 24 (01) :203-223
[4]   The Cauchy problem for nonlinear hyperbolic equations with Levi condition [J].
Cicognani, M ;
Zanghirati, L .
BULLETIN DES SCIENCES MATHEMATIQUES, 1999, 123 (06) :413-435
[5]  
Cordes H., 1976, 72 SFB
[6]  
Cordes H. O., 1995, TECHNIQUE PSEUDODIFF
[7]  
Coriasco S, 2002, MATH NACHR, V242, P61, DOI 10.1002/1522-2616(200207)242:1<61::AID-MANA61>3.0.CO
[8]  
2-4
[9]  
Coriasco S., 1999, RICERCHE MAT S, V48, P25
[10]  
CORIASCO S, 1999, REND SEM MAT U POL T, V57, P249