Membrane Materials for Selective Ion Separations at the Water-Energy Nexus

被引:167
作者
DuChanois, Ryan M. [1 ,2 ]
Porter, Cassandra J. [1 ]
Violet, Camille [1 ]
Verduzco, Rafael [2 ,3 ]
Elimelech, Menachem [1 ,2 ]
机构
[1] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06520 USA
[2] Nanosyst Engn Res Ctr Nanotechnol Enabled Water T, 6100 Main St,MS 6398, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem & Biomol Engn, Mat Sci & NanoEngn, Houston, TX 77005 USA
关键词
desalination; flow battery; ion selectivity; resource recovery; water treatment; ANION-EXCHANGE MEMBRANES; ADVANCED POROUS MEMBRANES; SULFONIC-ACID GROUPS; 1 NM PORES; TRANSPORT-PROPERTIES; POLYMER-FILMS; PERMSELECTIVITY TRADEOFFS; MEDIATED TRANSPORT; PROTON CONDUCTION; CATION-TRANSPORT;
D O I
10.1002/adma.202101312
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetic polymer membranes are enabling components in key technologies at the water-energy nexus, including desalination and energy conversion, because of their high water/salt selectivity or ionic conductivity. However, many applications at the water-energy nexus require ion selectivity, or separation of specific ionic species from other similar species. Here, the ion selectivity of conventional polymeric membrane materials is assessed and recent progress in enhancing selective transport via tailored free volume elements and ion-membrane interactions is described. In view of the limitations of polymeric membranes, three material classes-porous crystalline materials, 2D materials, and discrete biomimetic channels-are highlighted as possible candidates for ion-selective membranes owing to their molecular-level control over physical and chemical properties. Lastly, research directions and critical challenges for developing bioinspired membranes with molecular recognition are provided.
引用
收藏
页数:18
相关论文
共 156 条
[1]  
Abraham J, 2017, NAT NANOTECHNOL, V12, P546, DOI [10.1038/nnano.2017.21, 10.1038/NNANO.2017.21]
[2]   Biomimetic potassium-selective nanopores [J].
Acar, Elif Turker ;
Buchsbaum, Steven F. ;
Combs, Cody ;
Fornasiero, Francesco ;
Siwy, Zuzanna S. .
SCIENCE ADVANCES, 2019, 5 (02)
[3]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[4]   Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs) [J].
Almeida, M. Ines G. S. ;
Cattrall, Robert W. ;
Kolev, Spas D. .
JOURNAL OF MEMBRANE SCIENCE, 2012, 415 :9-23
[5]  
Ameloot R, 2011, NAT CHEM, V3, P382, DOI [10.1038/NCHEM.1026, 10.1038/nchem.1026]
[6]   New cyclic peptide assemblies with hydrophobic cavities:: The structural and thermodynamic basis of a new class of peptide nanotubes [J].
Amorín, M ;
Castedo, L ;
Granja, JR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (10) :2844-2845
[7]  
[Anonymous], 1966, US Patent No, Patent No. [3426297, 3282,875, 3282875, 3,282,875]
[8]  
[Anonymous], 2019, Global Energy & CO2 Status Report 2019
[9]   Restricting Lattice Flexibility in Polycrystalline Metal-Organic Framework Membranes for Carbon Capture [J].
Babu, Deepu J. ;
He, Guangwei ;
Hao, Jian ;
Vandat, Mohammad Tohidi ;
Schouwink, Pascal Alexander ;
Mensi, Mounir ;
Agrawal, Kumar Varoon .
ADVANCED MATERIALS, 2019, 31 (28)
[10]   NEW THIN-FILM COMPOSITE SEAWATER REVERSE-OSMOSIS MEMBRANE [J].
CADOTTE, JE ;
PETERSEN, RJ ;
LARSON, RE ;
ERICKSON, EE .
DESALINATION, 1980, 32 (1-3) :25-31