Constrained Nonlinear state estimation - A differential evolution based moving horizon approach

被引:0
作者
Wang Yudong [1 ]
Wang Jingchun [1 ]
Liu Bo [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE | 2007年 / 4682卷
关键词
moving horizon estimation; differential evolution; state estimation; extended Kalman filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:1184 / 1192
页数:9
相关论文
共 9 条
[1]  
CHRISTOPHER VR, 2001, AUTOMATICA, V37, P1619
[2]  
HUANG FZ, APPL MATH COMPUT, DOI DOI 10.1016/j.amc.(2006)07-105
[3]  
Price K, 1997, DR DOBBS J, V22, P18
[4]  
Rao C. V., 2000, Moving horizon strategies for the constrained monitoring and control of nonlinear discrete-time systems
[5]   Constrained state estimation for nonlinear discrete-time systems: Stability and moving horizon approximations [J].
Rao, CV ;
Rawlings, JB ;
Mayne, DQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (02) :246-258
[6]   Constrained process monitoring: Moving-horizon approach [J].
Rao, CV ;
Rawlings, JB .
AICHE JOURNAL, 2002, 48 (01) :97-109
[7]  
Rao CV, 2000, PROG SYST C, V26, P45
[8]  
STORN R, 1996, MINIMIZING REAL FUNC, P842
[9]  
Wang L., 2001, Intelligent optimization algorithm and its application