A Novel Optimizer in Deep Neural Network for Diabetic Retinopathy Classification

被引:2
|
作者
Nanda, Pranamita [1 ]
Duraipandian, N. [2 ]
机构
[1] Velammal Inst Technol, Dept Comp Sci & Engn, Chennai 601204, Tamil Nadu, India
[2] Saveetha Engn Coll, Dept Comp Sci & Engn, Chennai 602105, Tamil Nadu, India
来源
COMPUTER SYSTEMS SCIENCE AND ENGINEERING | 2022年 / 43卷 / 03期
关键词
CNN; diabetic retinopathy; data augmentation; gradient descent; deep learning; optimization; DIAGNOSIS; ALGORITHM;
D O I
10.32604/csse.2022.024695
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In severe cases, diabetic retinopathy can lead to blindness. For decades, automatic classification of diabetic retinopathy images has been a challenge. Medical image processing has benefited from advances in deep learning systems. To enhance the accuracy of image classification driven by Convolutional Neural Network (CNN), balanced dataset is generated by data augmentation method followed by an optimized algorithm. Deep neural networks (DNN) are frequently optimized using gradient (GD) based techniques. Vanishing gradient is the main drawback of GD algorithms. In this paper, we suggest an innovative algorithm, to solve the above problem, Hypergradient Descent learning rate based Quasi hyperbolic (HDQH) gradient descent to optimize the weights and biases. The algorithms only use first order gradients, which reduces computation time and storage space requirements. The algorithms do not require more tuning of the learning rates as the learning rate tunes itself by means of gradients. We present empirical evaluation of our algorithm on two public retinal image datasets such as Messidor and DDR by using Resnet18 and Inception V3 architectures. The findings of the experiment show that the efficiency and accuracy of our algorithm outperforms the other cutting-edge algorithms. HDQHAdam shows the highest accuracy of 97.5 on Resnet18 and 95.7 on Inception V3 models respectively.
引用
收藏
页码:1099 / 1110
页数:12
相关论文
共 50 条
  • [1] An intelligible deep convolution neural network based approach for classification of diabetic retinopathy
    Sharma, Sunil
    Maheshwari, Saumil
    Shukla, Anupam
    BIO-ALGORITHMS AND MED-SYSTEMS, 2018, 14 (02)
  • [2] Deep Convolutional Neural Networks for Diabetic Retinopathy Classification
    Lian, Chunyan
    Liang, Yixiong
    Kang, Rui
    Xiang, Yao
    ICAIP 2018: 2018 THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN IMAGE PROCESSING, 2018, : 68 - 72
  • [3] An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network
    Hemanth, D. Jude
    Deperlioglu, Omer
    Kose, Utku
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03): : 707 - 721
  • [4] Diabetic retinopathy detection from image to classification using deep convolutional neural network
    Varnousfaderani, Ehsan Shahrian
    Belghith, Akram
    Yousefi, Siamak
    Merkow, Jameson
    Tu Zhuowen
    Bowd, Christopher
    Zangwill, Linda M.
    Goldbaum, Michael Henry
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [5] Convolutional Neural Network for Classification of Diabetic Retinopathy Grade
    Alcala-Rmz, Vanessa
    Maeda-Gutierrez, Valeria
    Zanella-Calzada, Laura A.
    Valladares-Salgado, Adan
    Celaya-Padilla, Jose M.
    Galvan-Tejada, Carlos E.
    ADVANCES IN SOFT COMPUTING, MICAI 2020, PT I, 2020, 12468 : 104 - 118
  • [6] Diabetic retinopathy screening using deep neural network
    Ramachandran, Nishanthan
    Hong, Sheng Chiong
    Sime, Mary J.
    Wilson, Graham A.
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2018, 46 (04): : 412 - 416
  • [7] ODIRNet: a robust deep neural network for diabetic retinopathy
    Ray, Rahul
    Jena, Sudarson
    Biswal, Sangita Kumari
    Parida, Priyadarsan
    Darswal, Mrinalini
    Engineering Research Express, 2025, 7 (01):
  • [8] Detection of Diabetic Retinopathy using Deep Neural Network
    Chen, HaiQuan
    Zeng, XiangLong
    Luo, Yuan
    Ye, WenBin
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [9] DIABETIC RETINOPATHY GRADING USING DEEP NEURAL NETWORK
    Ramachandran, Nishan
    Chiong, Hong Sheng
    Sime, Mary Jane
    Wilson, Graham
    CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2017, 45 : 34 - 35
  • [10] A Novel Diabetic Retinopathy Detection Approach Based on Deep Symmetric Convolutional Neural Network
    Liu, Tieyuan
    Chen, Yi
    Shen, Hongjie
    Zhou, Rupeng
    Zhang, Meng
    Liu, Tonglai
    Liu, Jin
    IEEE ACCESS, 2021, 9 : 160552 - 160558