Lp-Lq ESTIMATES FOR THE DAMPED WAVE EQUATION AND THE CRITICAL EXPONENT FOR THE NONLINEAR PROBLEM WITH SLOWLY DECAYING DATA

被引:29
作者
Ikeda, Masahiro [1 ,2 ]
Inui, Takahisa [3 ]
Okamoto, Mamoru [4 ]
Wakasugi, Yuta [5 ]
机构
[1] Keio Univ, Dept Math, Fac Sci & Technol, Kohoku Ku, 3-14-1 Hiyoshi, Yokohama, Kanagawa 2238522, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Tokyo, Japan
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
[4] Shinshu Univ, Div Math & Phys, Fac Engn, 4-17-1 Wakasato, Nagano 3808553, Japan
[5] Ehime Univ, Grad Sch Sci & Engn, Dept Engn Prod & Environm, 3 Bunkyo Cho, Matsuyama, Ehime 7908577, Japan
关键词
Nonlinear damped wave equation; L-p-L-q estimates; critical exponent; CAUCHY-PROBLEM; GLOBAL-SOLUTIONS; R-N; EXISTENCE; ASYMPTOTICS; BEHAVIOR; SPACE;
D O I
10.3934/cpaa.2019090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Cauchy problem of the damped wave equation partial derivative(2)(t)u - Delta u + partial derivative(t)u = 0 and give sharp L-p-L-q estimates of the solution for 1 <= q <= p < infinity (p not equal 1) with derivative loss. This is an improvement of the so-called Matsumura estimates. Moreover, as its application, we consider the nonlinear problem with initial data in (H-s boolean AND H-r(beta)) x (Hs-1 boolean AND L-r) with r is an element of (1,2], s >= 0, and beta = (n - 1 ) vertical bar 1/2 - 1/r vertical bar and prove the local and global existence of solutions. In particular, we prove the existence of the global solution with small initial data for the critical nonlinearity with the power 1 + 2r/n, while it is known that the critical power 1 + 2/n belongs to the blow-up region when r = 1. We also discuss the asymptotic behavior of the global solution in supercritical cases. Moreover, we present blow-up results in subcritical cases. We give estimates of lifespan by an ODE argument.
引用
收藏
页码:1967 / 2008
页数:42
相关论文
共 37 条
[1]  
Brezies H., 2011, Functional Analysis. Sobolev Spaces and Partial Differential Equations, DOI [10.1007/978-0-387-70914-7, DOI 10.1007/978-0-387-70914-7]
[2]  
Chen J., 2014, ABSTR APPL AN
[3]   A robust SVM classification framework using PSM for multi-class recognition [J].
Chen, Jinhui ;
Takiguchi, Tetsuya ;
Ariki, Yasuo .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2015, :1-12
[4]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[5]  
FUJIWARA K., FUNKCIAL EKVAC
[6]   Finite time blowup of solutions to the nonlinear Schrodinger equation without gauge invariance [J].
Fujiwara, Kazumasa ;
Ozawa, Tohru .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (08)
[7]  
Giga MH, 2010, PROG NONLINEAR DIFFE, V79, P1, DOI 10.1007/978-0-8176-4651-6
[8]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[9]   Damped wave equation with a critical nonlinearity [J].
Hayashi, N ;
Kaikina, EI ;
Naumkin, PI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :1165-1185
[10]   On the critical nonlinear damped wave equation with large initial data [J].
Hayashi, Nakao ;
Kaikina, Elena I. ;
Naumkin, Pavel I. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :1400-1425