Blow-up of ground states of fractional Choquard equations

被引:0
作者
Vilasi, Luca [1 ]
Wang, Youjun [2 ]
机构
[1] Phys Sci & Earth Sci Univ Messina, Dept Math & Comp Sci, Viale F Stagno Alcontres 31, I-98166 Messina, Italy
[2] South China Univ Technol, Dept Math, Guangzhou 510640, Peoples R China
关键词
Choquard equation; Fractional Laplacian; Blow-up; SEMILINEAR ELLIPTIC-EQUATIONS; EXISTENCE;
D O I
10.1016/j.na.2022.113117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the blow-up behavior of ground states of the fractional Choquard equation (-?)(s)u + u = (K-alpha * |u|(p epsilon))|u|(p epsilon-2)u in R-N, with s is an element of (0, 1), N > 4s, K-alpha Riesz potential of order alpha is an element of (0, N), as the exponent p(epsilon) approaches the upper critical growth regime in Hardy-Littlewood- Sobolev's inequality. We prove that the ground state u(epsilon) blows up in the sense that IIu(epsilon)II(L infinity(RN)) = o(epsilon(-N-2s/4s)) as epsilon -> 0(+). (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:21
相关论文
共 23 条
[1]   Asymptotic Behavior of Ground States and Local Uniqueness for Fractional Schrodinger Equations with Nearly Critical Growth [J].
Cassani, Daniele ;
Wang, Youjun .
POTENTIAL ANALYSIS, 2023, 59 (01) :1-39
[2]   Bounds for best constants in subcritical Sobolev embeddings [J].
Cassani, Daniele ;
Tarsi, Cristina ;
Zhang, Jianjun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :438-449
[3]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212
[4]   Ground state solutions for non-autonomous fractional Choquard equations [J].
Chen, Yan-Hong ;
Liu, Chungen .
NONLINEARITY, 2016, 29 (06) :1827-1842
[5]   On fractional Choquard equations [J].
d'Avenia, Pietro ;
Siciliano, Gaetano ;
Squassina, Marco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1447-1476
[6]   Uniqueness of Radial Solutions for the Fractional Laplacian [J].
Frank, Rupert L. ;
Lenzmann, Enno ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (09) :1671-1726
[7]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[8]   GROUND STATES OF NONLINEAR FRACTIONAL CHOQUARD EQUATIONS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL GROWTH [J].
Jin, Hua ;
Liu, Wenbin ;
Zhang, Huixing ;
Zhang, Jianjun .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) :123-144
[9]  
Frank RL, 2010, Arxiv, DOI arXiv:0910.2721
[10]  
LIEB EH, 1977, STUD APPL MATH, V57, P93