Cavity electromechanics with parametric mechanical driving

被引:35
作者
Bothner, D. [1 ]
Yanai, S. [1 ]
Iniguez-Rabago, A. [1 ]
Yuan, M. [1 ,2 ]
Blanter, Ya M. [1 ]
Steele, G. A. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
[2] Inst Forschungsverbund Berlin eV, Paul Drude Inst Festkorperphys, Hausvogteipl 5-7, D-10117 Berlin, Germany
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
CONDENSATE-OPTOMECHANICAL CAVITY; FOCK STATES; QUANTUM; AMPLIFICATION; MOTION; GENERATION; CONVERSION; PHOTON;
D O I
10.1038/s41467-020-15389-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microwave optomechanical circuits have been demonstrated to be powerful tools for both exploring fundamental physics of macroscopic mechanical oscillators, as well as being promising candidates for on-chip quantum-limited microwave devices. In most experiments so far, the mechanical oscillator is either used as a passive element and its displacement is detected using the superconducting cavity, or manipulated by intracavity fields. Here, we explore the possibility to directly and parametrically manipulate the mechanical nanobeam resonator of a cavity electromechanical system, which provides additional functionality to the toolbox of microwave optomechanics. In addition to using the cavity as an interferometer to detect parametrically modulated mechanical displacement and squeezed thermomechanical motion, we demonstrate that this approach can realize a phase-sensitive parametric amplifier for intracavity microwave photons. Future perspectives of optomechanical systems with a parametrically driven mechanical oscillator include exotic bath engineering with negative effective photon temperatures, or systems with enhanced optomechanical nonlinearities.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Electromagnetically induced transparency in mechanical effects of light [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2010, 81 (04)
[2]   Quantum-enabled temporal and spectral mode conversion of microwave signals [J].
Andrews, R. W. ;
Reed, A. P. ;
Cicak, K. ;
Teufel, J. D. ;
Lehnert, K. W. .
NATURE COMMUNICATIONS, 2015, 6
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   Digitized adiabatic quantum computing with a superconducting circuit [J].
Barends, R. ;
Shabani, A. ;
Lamata, L. ;
Kelly, J. ;
Mezzacapo, A. ;
Heras, U. Las ;
Babbush, R. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Yu ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Quintana, C. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Solano, E. ;
Neven, H. ;
Martinis, John M. .
NATURE, 2016, 534 (7606) :222-226
[5]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[6]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[7]   Multi-mode ultra-strong coupling in circuit quantum electrodynamics [J].
Bosman, Sal J. ;
Gely, Mario F. ;
Singh, Vibhor ;
Bruno, Alessandro ;
Bothner, Daniel ;
Steele, Gary A. .
NPJ QUANTUM INFORMATION, 2017, 3
[8]   Optical phase-space reconstruction of mirror motion at the attometer level [J].
Briant, T ;
Cohadon, PF ;
Pinard, M ;
Heidmann, A .
EUROPEAN PHYSICAL JOURNAL D, 2003, 22 (01) :131-140
[9]   Parametric amplification in a torsional microresonator [J].
Carr, DW ;
Evoy, S ;
Sekaric, L ;
Craighead, HG ;
Parpia, JM .
APPLIED PHYSICS LETTERS, 2000, 77 (10) :1545-1547
[10]   Amplification and squeezing of quantum noise with a tunable Josephson metamaterial [J].
Castellanos-Beltran, M. A. ;
Irwin, K. D. ;
Hilton, G. C. ;
Vale, L. R. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (12) :929-931