Superconductivity and strong correlations in moire flat bands

被引:627
作者
Balents, Leon [1 ,2 ]
Dean, Cory R. [3 ]
Efetov, Dmitri K. [4 ]
Young, Andrea F. [5 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Canadian Inst Adv Res, Toronto, ON, Canada
[3] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[4] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Barcelona, Spain
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
欧盟地平线“2020”;
关键词
MAGIC-ANGLE; DIRAC FERMIONS; MOTT INSULATOR; GRAPHENE; PHYSICS; STATES;
D O I
10.1038/s41567-020-0906-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Strongly correlated systems can give rise to spectacular phenomenology, from high-temperature superconductivity to the emergence of states of matter characterized by long-range quantum entanglement. Low-density flat-band systems play a vital role because the energy range of the band is so narrow that the Coulomb interactions dominate over kinetic energy, putting these materials in the strongly-correlated regime. Experimentally, when a band is narrow in both energy and momentum, its filling may be tuned in situ across the whole range, from empty to full. Recently, one particular flat-band system-that of van der Waals heterostructures, such as twisted bilayer graphene-has exhibited strongly correlated states and superconductivity, but it is still not clear to what extent the two are linked. Here, we review the status and prospects for flat-band engineering in van der Waals heterostructures and explore how both phenomena emerge from the moire flat bands. The identification of superconductivity and strong interactions in twisted bilayer 2D materials prompted many questions about the interplay of these phenomena. This Perspective presents the status of the field and the urgent issues for future study.
引用
收藏
页码:725 / 733
页数:9
相关论文
共 85 条
[51]   Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature [J].
Mayorov, Alexander S. ;
Gorbachev, Roman V. ;
Morozov, Sergey V. ;
Britnell, Liam ;
Jalil, Rashid ;
Ponomarenko, Leonid A. ;
Blake, Peter ;
Novoselov, Kostya S. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Geim, A. K. .
NANO LETTERS, 2011, 11 (06) :2396-2399
[52]  
Moriyama S., 2019, OBSERVATION SUPERCON
[53]   Mean-field theory for superconductivity in twisted bilayer graphene [J].
Peltonen, Teemu J. ;
Ojajarvi, Risto ;
Heikkila, Tero T. .
PHYSICAL REVIEW B, 2018, 98 (22)
[54]   Internal screening and dielectric engineering in magic-angle twisted bilayer graphene [J].
Pizarro, J. M. ;
Rosner, M. M. ;
Thomale, R. ;
Valenti, R. ;
Wehling, T. O. .
PHYSICAL REVIEW B, 2019, 100 (16)
[55]   Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene [J].
Po, Hoi Chun ;
Zou, Liujun ;
Vishwanath, Ashvin ;
Senthil, T. .
PHYSICAL REVIEW X, 2018, 8 (03)
[56]   Large linear-in-temperature resistivity in twisted bilayer graphene [J].
Polshyn, Hryhoriy ;
Yankowitz, Matthew ;
Chen, Shaowen ;
Zhang, Yuxuan ;
Watanabe, K. ;
Taniguchi, T. ;
Dean, Cory R. ;
Young, Andrea F. .
NATURE PHYSICS, 2019, 15 (10) :1011-+
[57]   Cloning of Dirac fermions in graphene superlattices [J].
Ponomarenko, L. A. ;
Gorbachev, R. V. ;
Yu, G. L. ;
Elias, D. C. ;
Jalil, R. ;
Patel, A. A. ;
Mishchenko, A. ;
Mayorov, A. S. ;
Woods, C. R. ;
Wallbank, J. R. ;
Mucha-Kruczynski, M. ;
Piot, B. A. ;
Potemski, M. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Guinea, F. ;
Fal'ko, V. I. ;
Geim, A. K. .
NATURE, 2013, 497 (7451) :594-597
[58]   Mott and generalized Wigner crystal states in WSe2/WS2 moire superlattices [J].
Regan, Emma C. ;
Wang, Danqing ;
Jin, Chenhao ;
Utama, M. Iqbal ;
Gao, Beini ;
Wei, Xin ;
Zhao, Sihan ;
Zhao, Wenyu ;
Zhang, Zuocheng ;
Yumigeta, Kentaro ;
Blei, Mark ;
Carlstrom, Johan D. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Tongay, Sefaattin ;
Crommie, Michael ;
Zettl, Alex ;
Wang, Feng .
NATURE, 2020, 579 (7799) :359-+
[59]  
Saito Yu., 2019, Decoupling superconductivity and correlated insulators in twisted bilayer graphene
[60]   Intrinsic quantized anomalous Hall effect in a moire heterostructure [J].
Serlin, M. ;
Tschirhart, C. L. ;
Polshyn, H. ;
Zhang, Y. ;
Zhu, J. ;
Watanabe, K. ;
Taniguchi, T. ;
Balents, L. ;
Young, A. F. .
SCIENCE, 2020, 367 (6480) :900-+