Complete Monotonicity for a New Ratio of Finitely Many Gamma Functions

被引:7
作者
Qi, Feng [1 ,2 ]
机构
[1] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
[2] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
关键词
Bernoulli number; ratio; generating function; complete monotonicity; gamma function; digamma function; trigamma function; logarithmic derivative; linear combination; inequality; INTEGRAL-REPRESENTATIONS; LIMIT FORMULAS; INEQUALITIES; BOUNDS; PROOFS;
D O I
10.1007/s10473-022-0206-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by deriving an inequality involving the generating function of the Bernoulli numbers, the author introduces a new ratio of finitely many gamma functions, finds complete monotonicity of the second logarithmic derivative of the ratio, and simply reviews the complete monotonicity of several linear combinations of finitely many digamma or trigamma functions.
引用
收藏
页码:511 / 520
页数:10
相关论文
共 56 条
[1]  
Abramowitz M., 1972, Applied Mathematics Series, V55
[2]   Some classes of completely monotonic functions, II [J].
Alzer, Horst ;
Berg, Christian .
RAMANUJAN JOURNAL, 2006, 11 (02) :225-248
[3]   Complete monotonicity of a function related to the binomial probability [J].
Alzer, Horst .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) :10-15
[4]  
[Anonymous], 1946, The Laplace Transform
[5]  
[Anonymous], 2020, COMPLETE MONOTONICIT
[6]  
Bullen P. S., 2003, Handbook of means and their inequalities, DOI [10.1007/978-94-017-0399-43, DOI 10.1007/978-94-017-0399-4]
[8]   ON COMPLETE MONOTONICITY OF LINEAR COMBINATION OF FINITE PSI FUNCTIONS [J].
Guo, Bai-Ni ;
Qi, Feng .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04) :1223-1228
[9]   SHARP INEQUALITIES FOR POLYGAMMA FUNCTIONS [J].
Guo, Bai-Ni ;
Qi, Feng ;
Zhao, Jiao-Lian ;
Luo, Qiu-Ming .
MATHEMATICA SLOVACA, 2015, 65 (01) :103-120
[10]   TWO NEW PROOFS OF THE COMPLETE MONOTONICITY OF A FUNCTION INVOLVING THE PSI FUNCTION [J].
Guo, Bai-Ni ;
Qi, Feng .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (01) :103-111