A probabilistic framework for floodplain mapping using hydrological modeling and unsteady hydraulic modeling

被引:22
作者
Ahmadisharaf, Ebrahim [1 ]
Kalyanapu, Alfred J. [2 ]
Bates, Paul D. [3 ]
机构
[1] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA
[2] Tennessee Technol Univ, Dept Civil & Environm Engn, Cookeville, TN 38505 USA
[3] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
来源
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES | 2018年 / 63卷 / 12期
关键词
floodplain mapping; hydrological modeling; unsteady hydraulic modeling; uncertainty analysis; UNCERTAIN BOUNDARY-CONDITIONS; DECISION-SUPPORT-SYSTEM; RAINFALL-RUNOFF MODEL; SENSITIVITY-ANALYSIS; INUNDATION PROBABILITIES; DISTRIBUTED MODELS; RIVER; FUTURE; WATER; FLOW;
D O I
10.1080/02626667.2018.1525615
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Prediction of design hydrographs is key in floodplain mapping using hydraulic models, which are either steady state or unsteady. The former, which require only an input peak, substantially overestimate the volume of water entering the floodplain compared to the more realistic dynamic case simulated by the unsteady models that require the full hydrograph. Past efforts to account for the uncertainty of boundary conditions using unsteady hydraulic modeling have been based largely on a joint flood frequency-shape analysis, with only a very limited number of studies using hydrological modeling to produce the design hydrographs. This study therefore presents a generic probabilistic framework that couples a hydrological model with an unsteady hydraulic model to estimate the uncertainty of flood characteristics. The framework is demonstrated on the Swannanoa River watershed in North Carolina, USA. Given its flexibility, the framework can be applied to study other sources of uncertainty in other hydrological models and watersheds.
引用
收藏
页码:1759 / 1775
页数:17
相关论文
共 95 条
  • [61] Uncertainty in flood inundation mapping: Current issues and future directions
    Merwade, Venkatesh
    Olivera, Francisco
    Arabi, Mazdak
    Edleman, Scott
    [J]. JOURNAL OF HYDROLOGIC ENGINEERING, 2008, 13 (07) : 608 - 620
  • [62] A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany
    Meyer, Volker
    Scheuer, Sebastian
    Haase, Dagmar
    [J]. NATURAL HAZARDS, 2009, 48 (01) : 17 - 39
  • [63] Moriasi DN, 2015, T ASABE, V58, P1763
  • [64] Morris M. W., 2009, T060603 FLOODSITE
  • [65] Nash J.E., 1970, J. Hydrol., P282, DOI [DOI 10.1016/0022-1694(70)90255-6, 10.1016/0022-1694(70)90255-6]
  • [66] Probabilistic flood risk mapping including spatial dependence
    Neal, Jeffrey
    Keef, Caroline
    Bates, Paul
    Beven, Keith
    Leedal, David
    [J]. HYDROLOGICAL PROCESSES, 2013, 27 (09): : 1349 - 1363
  • [67] Evaluation of food risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam
    Nguyen Mai Dang
    Babel, Mukand S.
    Luong, Huynh T.
    [J]. NATURAL HAZARDS, 2011, 56 (01) : 169 - 194
  • [68] Probabilistic flood hazard maps for Jakarta derived from a stochastic rain-storm generator
    Nuswantoro, R.
    Diermanse, F.
    Molkenthin, F.
    [J]. JOURNAL OF FLOOD RISK MANAGEMENT, 2016, 9 (02): : 105 - 124
  • [69] Papaioannou G., 2017, ADV GEOSCIENCES, V44, P23, DOI DOI 10.5194/adgeo-44-23-2017
  • [70] Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS)
    Pappenberger, F
    Beven, KJ
    Hunter, NM
    Bates, PD
    Gouweleeuw, BT
    Thielen, J
    de Roo, APJ
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2005, 9 (04) : 381 - 393