An adaptive stabilized finite element scheme for the advection-reaction-diffusion equation

被引:39
|
作者
Araya, R [1 ]
Behrens, E [1 ]
Rodríguez, R [1 ]
机构
[1] Univ Concepcion, Dept Ingn Matemat, Concepcion, Chile
关键词
advection-reaction-diffusion problem; boundary and inner layers; a posteriori error estimates; stabilized finite elements;
D O I
10.1016/j.apnum.2004.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive finite element scheme for the advection-reaction-diffusion equation is introduced and analyzed. This scheme is based on a stabilized finite element method combined with a residual error estimator. The estimator is proved to be reliable and efficient. More precisely, global upper and local lower error estimates with constants depending at most on the local mesh Peclet number are proved. The effectiveness of this approach is illustrated by several numerical experiments. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:491 / 503
页数:13
相关论文
共 50 条
  • [1] Finite element and isogeometric stabilized methods for the advection-diffusion-reaction equation
    Key, Konstantin
    Abdelmalik, Michael R. A.
    Elgeti, Stefanie
    Hughes, Thomas J. R.
    Baidoo, Frimpong A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [2] ANALYSIS OF AN INTERFACE STABILIZED FINITE ELEMENT METHOD: THE ADVECTION-DIFFUSION-REACTION EQUATION
    Wells, Garth N.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) : 87 - 109
  • [3] Stability of traveling wavefronts for advection-reaction-diffusion equation
    Mei, Ming
    Xie, Ruijun
    APPLIED MATHEMATICS LETTERS, 2024, 154
  • [4] An adaptive stabilized method for advection-diffusion-reaction equation
    Araya, Rodolfo
    Aguayo, Jorge
    Munoz, Santiago
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 376
  • [5] A multiscale/stabilized finite element method for the advection-diffusion equation
    Masud, A
    Khurram, RA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (21-22) : 1997 - 2018
  • [6] NUMERICAL SOLUTION OF FRACTIONAL ORDER ADVECTION-REACTION-DIFFUSION EQUATION
    Das, Subir
    Singh, Anup
    Ong, Seng Huat
    THERMAL SCIENCE, 2018, 22 : S309 - S316
  • [7] Numerical solution of the advection-reaction-diffusion equation at different scales
    Rubio, A. D.
    Zalts, A.
    El Hasi, C. D.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2008, 23 (01) : 90 - 95
  • [8] A modified backward Euler scheme for advection-reaction-diffusion systems
    Madzvamuse, Anotida
    MATHEMATICAL MODELING OF BIOLOGICAL SYSTEMS, VOL I: CELLULAR BIOPHYSICS, REGULATORY NETWORKS, DEVELOPMENT, BIOMEDICINE, AND DATA ANALYSIS, 2007, : 183 - 189
  • [9] On subgrid multiscale stabilized finite element method for advection-diffusion-reaction equation with variable coefficients
    Chowdhury, Manisha
    Kumar, B. V. Rathish
    APPLIED NUMERICAL MATHEMATICS, 2020, 150 : 576 - 586
  • [10] Uniform convergence analysis of finite difference approximations for advection-reaction-diffusion problem on adaptive grids
    Sun, Li-Nan
    Wu, Yu-Jiang
    Yang, Ai-Li
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (15) : 3292 - 3307