Full-band Monte Carlo simulation of high-energy carrier transport in single photon avalanche diodes with multiplication layers made of InP, InAlAs, and GaAs

被引:9
作者
Dolgos, Denis [1 ]
Meier, Hektor [1 ]
Schenk, Andreas [1 ]
Witzigmann, Bernd [2 ]
机构
[1] ETH, Integrated Syst Lab, CH-8092 Zurich, Switzerland
[2] Univ Kassel, Computat Elect & Photon Grp, D-34121 Kassel, Germany
关键词
IMPACT IONIZATION COEFFICIENTS; VELOCITY-FIELD CHARACTERISTICS; ELECTRON-TRANSPORT; BREAKDOWN PROBABILITIES; SEMICONDUCTORS; DIAMOND;
D O I
10.1063/1.4717729
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the high-energy charge dynamics of electrons and holes in the multiplication process of single photon avalanche diodes. The technologically important multiplication layer materials InP and In0.52Al0.48As, used in near infrared photon detectors, are analyzed and.. compared with GaAs. We use the full-band Monte Carlo technique to solve the Boltzmann transport equation which improves the state-of-the-art treatment of high-field carrier transport in the multiplication process. As a result of the computationally efficient treatment of the scattering rates and the parallel central processing unit power of modern computer clusters, the full-band Monte Carlo calculation of the breakdown characteristics has become feasible. The breakdown probability features a steeper rise versus the reverse bias for smaller multiplication layer widths for InP, In0.52Al0.48As, and GaAs. Both the time to avalanche breakdown and jitter decrease with shrinking size of the multiplication region for the three examined III-V semiconductors. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4717729]
引用
收藏
页数:11
相关论文
共 42 条
[1]   A COMPARISON OF NUMERICAL-SOLUTIONS OF THE BOLTZMANN TRANSPORT-EQUATION FOR HIGH-ENERGY ELECTRON-TRANSPORT SILICON [J].
ABRAMO, A ;
BAUDRY, L ;
BRUNETTI, R ;
CASTAGNE, R ;
CHAREF, M ;
DESSENNE, F ;
DOLLFUS, P ;
DUTTON, R ;
ENGL, WL ;
FAUQUEMBERGUE, R ;
FIEGNA, C ;
FISCHETTI, MV ;
GALDIN, S ;
GOLDSMAN, N ;
HACKEL, M ;
HAMAGUCHI, C ;
HESS, K ;
HENNACY, K ;
HESTO, P ;
HIGMAN, JM ;
IIZUKA, T ;
JUNGEMANN, C ;
KAMAKURA, Y ;
KOSINA, H ;
KUNIKIYO, T ;
LAUX, SE ;
LIM, HC ;
MAZIAR, C ;
MIZUNO, H ;
PEIFER, HJ ;
RAMASWAMY, S ;
SANO, N ;
SCORBOHACI, PG ;
SELBERHERR, S ;
TAKENAKA, M ;
TANG, TW ;
TANIGUCHI, K ;
THOBEL, JL ;
THOMA, R ;
TOMIZAWA, K ;
TOMIPZAWA, M ;
VOGELSANG, T ;
WANG, SL ;
WANG, XL ;
YAO, CS ;
YODER, PD ;
YOSHII, A .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1994, 41 (09) :1646-1654
[2]  
[Anonymous], 2003, COMP MICROE
[3]  
[Anonymous], 1991, Monte Carlo Device Simulation: Full Band and Beyond
[4]   IMPACT IONIZATION IN (100)-ORIENTED, (110)-ORIENTED, AND (111)-ORIENTED INP AVALANCHE PHOTO-DIODES [J].
ARMIENTO, CA ;
GROVES, SH .
APPLIED PHYSICS LETTERS, 1983, 43 (02) :198-200
[5]   THEORY OF HIGH-FIELD TRANSPORT OF HOLES IN GAAS AND INP [J].
BRENNAN, K ;
HESS, K .
PHYSICAL REVIEW B, 1984, 29 (10) :5581-5590
[6]  
Bufler F. M., 2003, FULL BAND MONTE CARL
[7]   Proof of a simple time-step propagation scheme for Monte Carlo simulation [J].
Bufler, FM ;
Schenk, A ;
Fichtner, W .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (3-6) :323-326
[8]   Infrared single photon avalanche detectors [J].
Campbell, Joe C. ;
Hu, Chong .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 10, 2010, 7 (10) :2536-2539
[9]  
Charbon E, 2010, OPT PHOTONICS NEWS, V21, P34, DOI 10.1364/OPN.21.2.000034
[10]   NONLOCAL PSEUDOPOTENTIAL CALCULATIONS FOR ELECTRONIC-STRUCTURE OF 11 DIAMOND AND ZINCBLENDE SEMICONDUCTORS [J].
CHELIKOWSKY, JR ;
COHEN, ML .
PHYSICAL REVIEW B, 1976, 14 (02) :556-582