Moser type inequalities for higher-order derivatives in Lorentz spaces

被引:24
作者
Alberico, Angela [1 ]
机构
[1] CNR, Ist Applicaz Calcolo M Picone, Sez Napoli, I-80131 Naples, Italy
关键词
Moser inequalities; higher-order derivatives; Lorentz-Sobolev spaces;
D O I
10.1007/s11118-008-9085-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sharp constants are exhibited in exponential inequalities corresponding to the limiting case of the Sobolev inequalities in Lorentz-Sobolev spaces of arbitrary order.
引用
收藏
页码:389 / 400
页数:12
相关论文
共 22 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]  
Alberico A, 2007, ANN ACAD SCI FENN-M, V32, P27
[3]   ON OPTIMIZATION PROBLEMS WITH PRESCRIBED REARRANGEMENTS [J].
ALVINO, A ;
TROMBETTI, G ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (02) :185-220
[4]  
Alvino A, 1996, POTENTIAL ANAL, V5, P273
[5]  
CARLESON L, 1986, B SCI MATH, V110, P113
[6]   SELECTIVE PROCESSING OF FOOD WORDS IN ANOREXIA-NERVOSA [J].
CHANNON, S ;
HEMSLEY, D ;
DESILVA, P .
BRITISH JOURNAL OF CLINICAL PSYCHOLOGY, 1988, 27 :259-260
[8]   Sobolev type embeddings in the limiting case [J].
Cwikel, M ;
Pustylnik, E .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :433-446
[9]   Sharp Sobolev embeddings and related Hardy inequalities: The critical case [J].
Edmunds, DE ;
Triebel, H .
MATHEMATISCHE NACHRICHTEN, 1999, 207 :79-92
[10]   Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms [J].
Edmunds, DE ;
Kerman, R ;
Pick, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 170 (02) :307-355