Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity

被引:43
作者
Sheng, Wei-Jie [1 ]
Li, Wan-Tong [1 ]
Wang, Zhi-Cheng [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
Pyramidal traveling fronts; Reaction-diffusion equations; Time periodic; ALLEN-CAHN EQUATIONS; DELAYED POPULATION-MODEL; NON-LINEAR DIFFUSION; MULTIDIMENSIONAL STABILITY; SPREADING SPEEDS; CURVED FRONTS; LEVEL SETS; ASYMPTOTIC STABILITY; DYNAMICAL-SYSTEMS; GLOBAL STABILITY;
D O I
10.1016/j.jde.2011.09.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the existence and stability of periodic pyramidal traveling fronts for reaction-diffusion equations with bistable time-periodic nonlinearity in R(N) with N >= 3. It is well known that two-dimensional periodic traveling curved fronts exist and are stable. In this paper, by constructing various of super-solutions and subsolutions, we first show that there exist three-dimensional periodic pyramidal traveling fronts, and then we prove that such periodic pyramidal traveling fronts are asymptotically stable. Finally, we further prove that our existence result holds for R(N) with N >= 4. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2388 / 2424
页数:37
相关论文
共 50 条
[1]   Periodic traveling waves and locating oscillating patterns in multidimensional domains [J].
Alikakos, ND ;
Bates, PW ;
Chen, XF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (07) :2777-2805
[2]  
[Anonymous], 2013, Mathematical Biology
[3]  
[Anonymous], ANN MATH IN PRESS
[4]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[5]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[6]   Traveling waves of bistable dynamics on a lattice [J].
Bates, PW ;
Chen, XF ;
Chmaj, AJJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (02) :520-546
[7]   Existence of nonplanar solutions of a simple model of premixed Bunsen flames [J].
Bonnet, A ;
Hamel, F .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :80-118
[8]   Existence and nonexistence of curved front solution of a biological equation [J].
Chapuisat, Guillemette .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (01) :237-279
[9]   Traveling waves with paraboloid like interfaces for balanced bistable dynamics [J].
Chen, Xinfu ;
Guo, Jong-Shenq ;
Hamel, Francois ;
Ninomiya, Hirokazu ;
Roquejoffre, Jean-Michel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (03) :369-393
[10]   Spreading speeds and travelling waves in a delayed population model with stage structure on a 2D spatial lattice [J].
Cheng, Cui-Ping ;
Li, Wan-Tong ;
Wang, Zhi-Cheng .
IMA JOURNAL OF APPLIED MATHEMATICS, 2008, 73 (04) :592-618