Leavitt path algebras with bases consisting solely of units

被引:2
作者
Lopez-Permouth, Sergio R. [1 ]
Pilewski, Nick [1 ]
机构
[1] Ohio Univ, Dept Math, Athens, OH 45701 USA
关键词
Leavitt path algebras; Algebras with involution; Noncommutative algebras; Matrix algebras; Basis; Units;
D O I
10.1016/j.jalgebra.2018.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algebra is said to be an invertible algebra if it has a basis consisting solely of units. Given a field K and a finite graph E, we give a condition on E that is equivalent to that of the Leavitt path algebra L-K(E) being an invertible K-algebra. We derive from this a necessary and sufficient condition for the Cohn path algebra C-K(E) to be an invertible K-algebra. In addition, given a unital commutative ring R, sufficient conditions on E for the Leavitt path algebra L-R(E) to be an invertible R-algebra are given. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 58
页数:27
相关论文
共 17 条
  • [1] Abrams G, 2008, HOUSTON J MATH, V34, P423
  • [2] Finite-dimensional leavitt path algebras
    Abrams, G.
    Aranda Pino, G.
    Siles Molina, M.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) : 753 - 762
  • [3] The Leavitt path algebra of a graph
    Abrams, G
    Pino, GA
    [J]. JOURNAL OF ALGEBRA, 2005, 293 (02) : 319 - 334
  • [4] Abrams Gene, 2013, COHN PATH ALGEBRAS H
  • [5] Stable rank of Leavitt path algebras
    Ara, P.
    Pardo, E.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2375 - 2386
  • [6] Nonstable K-theory for graph algebras
    Ara, P.
    Moreno, M. A.
    Pardo, E.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) : 157 - 178
  • [7] Ara P., 2011, J REINE ANGEW MATH, V2012, P165
  • [8] Jespers E., 2015, GROUP RING GROUPS
  • [9] Lam T. Y., 2001, 1 COURSE NONCOMMUTAT
  • [10] Leavitt W. G., 1962, Trans. Amer. Math. Soc, V103, P113