Mathematical Modeling of THz Point Spread Function and Simulation of THz Imaging Systems

被引:124
作者
Ahi, Kiarash [1 ,2 ]
机构
[1] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[2] GLOBALFOUNDRIES, East Fishkill, NY 12533 USA
关键词
Mathematical model; point spread function (PSF); raster scanning; THz imaging; TERAHERTZ SPECTROSCOPY; RESOLUTION; IDENTIFICATION; TOMOGRAPHY; RADIATION; TIME;
D O I
10.1109/TTHZ.2017.2750690
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a comprehensive theory for cohesive mathematical modeling and simulation of THz imaging systems. For mathematical modeling of the point spread function (PSF), system and transmission variables such as spectrum, absorption coefficient, beam divergence, and depth of focus are incorporated into the Gaussian beam distribution. The raster scanning process is mathematically modeled as the convolution of the object function and the PSF. Simulated transmission THz images are achieved as a result. The simulated THz images, compared to the experimental THz images, show great accuracy in terms of the location of the details and structural similarity.
引用
收藏
页码:747 / 754
页数:8
相关论文
共 80 条
[1]   Potential of Chipless Authentication Based on Randomness Inherent in Fabrication Process for RF and THz [J].
Ali, Zeshan ;
Bonnefoy, Florent ;
Siragusa, Romain ;
Barbot, Nicolas ;
Hely, David ;
Perret, Etienne ;
Bernier, Maxime ;
Garet, Frederic .
2017 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2017,
[2]  
Angrisani L, 2016, NEW TRENDS AND DEVELOPMENTS IN METROLOGY, P21, DOI 10.5772/63734
[3]   Terahertz image segmentation using k-means clustering based on weighted feature learning and random pixel sampling [J].
Ayech, Mohamed Walid ;
Ziou, Djemel .
NEUROCOMPUTING, 2016, 175 :243-264
[4]   Advanced Processing Sequence for 3-D THz Imaging [J].
Balacey, Hugo ;
Recur, Benoit ;
Perraud, Jean-Baptiste ;
Sleiman, Joyce Bou ;
Guillet, Jean-Paul ;
Mounaix, Patrick .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2016, 6 (02) :191-198
[5]   The modeling peculiarities of diffractive propagation of the broadband terahertz two-dimensional field [J].
Balbekin, N. S. ;
Kulya, M. S. ;
Rogov, P. Yu. ;
Petrov, N. V. .
4TH INTERNATIONAL CONFERENCE OF PHOTONICS AND INFORMATION OPTICS, PHIO 2015, 2015, 73 :49-53
[6]   Real-Time, Subwavelength Terahertz Imaging [J].
Blanchard, F. ;
Doi, A. ;
Tanaka, T. ;
Tanaka, K. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 43, 2013, 43 :237-259
[7]   Improving time and space resolution in electro-optic sampling for near-field terahertz imaging [J].
Blanchard, Francois ;
Tanaka, Koichiro .
OPTICS LETTERS, 2016, 41 (20) :4645-4648
[8]  
Brown E. R., 2003, International Journal of High Speed Electronics and Systems, V13, P995, DOI 10.1142/S0129156403002125
[9]   Terahertz imaging with nanometer resolution [J].
Chen, HT ;
Kersting, R ;
Cho, GC .
APPLIED PHYSICS LETTERS, 2003, 83 (15) :3009-3011
[10]   Solid immersion terahertz imaging with sub-wavelength resolution [J].
Chernomyrdin, Nikita V. ;
Schadko, Aleksander O. ;
Lebedev, Sergey P. ;
Tolstoguzov, Viktor L. ;
Kurlov, Vladimir N. ;
Reshetov, Igor V. ;
Spektor, Igor E. ;
Skorobogatiy, Maksim ;
Yurchenko, Stanislav O. ;
Zaytsev, Kirill I. .
APPLIED PHYSICS LETTERS, 2017, 110 (22)