Issues on nanoimprint lithography with a single-layer resist structure

被引:13
作者
Jung, GY
Wu, W
Ganapathiappan, S
Ohlberg, DAA
Islam, MS
Li, X
Olynick, DL
Lee, H
Chen, Y
Wang, SY
Tong, WM
Williams, RS
机构
[1] Hewlett Packard Labs, Palo Alto, CA 94304 USA
[2] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Korea Univ, Div Mat Sci & Engn, Seoul 136701, South Korea
[5] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90024 USA
[6] Hewlett Packard Corp, Technol Dev Operat, Inkjet Technol Platfrom, Corvallis, OR 97330 USA
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2005年 / 81卷 / 07期
关键词
D O I
10.1007/s00339-005-3313-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We summarize our key developments in nanoimprint lithography (NIL) that employs a single layer resist lift-off process: lowering of the imprint temperature (for thermal imprint) and pressure, achieving uniform resist thickness and low residual resist layer thickness in the trenches, and eliminating metal 'rabbit ears' for the single-layer lift-off. In thermal NIL, our requirements for lower operating temperature and pressure motivated us to develop an alternative resist that is a viscous fluid at room temperature and cures at a lower temperature of 70 degrees C than the operating temperature of the conventional thermal NIL (approximate to 200 degrees C). For UV NIL, we devised a method to dispense the resist onto a hydrophobic mold and use the hydrophilic substrate surface to spread the resist via surface wetting to engineer a continuous and uniform film. We also explored the use of Si(110) substrates as molds to produce features with perfectly vertical side walls, and the use of aqua regia to directly etch away rabbit ears.
引用
收藏
页码:1331 / 1335
页数:5
相关论文
共 7 条
[1]   Nanoscale molecular-switch crossbar circuits [J].
Chen, Y ;
Jung, GY ;
Ohlberg, DAA ;
Li, XM ;
Stewart, DR ;
Jeppesen, JO ;
Nielsen, KA ;
Stoddart, JF ;
Williams, RS .
NANOTECHNOLOGY, 2003, 14 (04) :462-468
[2]   Imprint lithography with 25-nanometer resolution [J].
Chou, SY ;
Krauss, PR ;
Renstrom, PJ .
SCIENCE, 1996, 272 (5258) :85-87
[3]   IMPRINT OF SUB-25 NM VIAS AND TRENCHES IN POLYMERS [J].
CHOU, SY ;
KRAUSS, PR ;
RENSTROM, PJ .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3114-3116
[4]   Step and flash imprint lithography: A new approach to high-resolution patterning [J].
Colburn, M ;
Johnson, S ;
Stewart, M ;
Damle, S ;
Bailey, T ;
Choi, B ;
Wedlake, M ;
Michaelson, T ;
Sreenivasan, SV ;
Ekerdt, J ;
Willson, CG .
EMERGING LITHOGRAPHIC TECHNOLOGIES III, PTS 1 AND 2, 1999, 3676 :379-389
[5]   Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces [J].
Islam, MS ;
Sharma, S ;
Kamins, TI ;
Williams, RS .
NANOTECHNOLOGY, 2004, 15 (05) :L5-L8
[6]   Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography [J].
Jung, GY ;
Li, ZY ;
Wu, W ;
Chen, Y ;
Olynick, DL ;
Wang, SY ;
Tong, WM ;
Williams, RS .
LANGMUIR, 2005, 21 (04) :1158-1161
[7]   Fabrication of a 34 x 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography [J].
Jung, GY ;
Ganapathiappan, S ;
Ohlberg, DAA ;
Olynick, DL ;
Chen, Y ;
Tong, WM ;
Williams, RS .
NANO LETTERS, 2004, 4 (07) :1225-1229