Viscosity approximation method for solving variational inequality problem in real Banach spaces

被引:0
作者
Ugwunnadi, G. C. [1 ,2 ]
机构
[1] Univ Eswatini, Dept Math, Private Bag 4, Kwaluseni, Eswatini
[2] Sefako Makgato Hlth Sci Univ, Dept Math & Appl Math, POB 94, ZA-0204 Pretoria, South Africa
来源
ARMENIAN JOURNAL OF MATHEMATICS | 2021年 / 13卷 / 03期
关键词
Fixed Point; Hierarchical Fixed Point Problems; Strongly Accretive Mapping; Lipschitzian Mapping; Nonexpansive Mapping; MAXIMAL MONOTONE-OPERATORS; FIXED-POINTS; NONEXPANSIVE-MAPPINGS; STRONG-CONVERGENCE; ITERATIVE ALGORITHMS; ACCRETIVE-OPERATORS; WEAK-CONVERGENCE; ZERO POINTS; CONVEX;
D O I
10.52737/18291163-2021.13.3-1-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the implicit and inertial-type viscosity approximation method for approximating a solution to the hierarchical variational inequality problem. Under some mild conditions on the parameters, we prove that the sequence generated by the proposed methods converges strongly to a solution of the above-mentioned problem in q-uniformly smooth Banach spaces. The results obtained in this paper generalize and improve many recent results in this direction.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 36 条
[1]   STRONG CONVERGENCE OF AN INERTIAL FORWARD-BACKWARD SPLITTING METHOD FOR ACCRETIVE OPERATORS IN REAL BANACH SPACE [J].
Abass, H. A. ;
Izuchukwu, C. ;
Mewomo, O. T. ;
Dong, Q. L. .
FIXED POINT THEORY, 2020, 21 (02) :397-412
[2]   Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space [J].
Alvarez, F .
SIAM JOURNAL ON OPTIMIZATION, 2004, 14 (03) :773-782
[3]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[4]  
Beheshti M, 2018, ARMEN J MATH, V10, P1
[5]   An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) :600-616
[6]   A HYBRID PROXIMAL-EXTRAGRADIENT ALGORITHM WITH INERTIAL EFFECTS [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2015, 36 (08) :951-963
[7]   NORMAL STRUCTURE COEFFICIENTS FOR BANACH-SPACES [J].
BYNUM, WL .
PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (02) :427-436
[8]   Some iterative methods for finding fixed points and for solving constrained convex minimization problems [J].
Ceng, L. -C. ;
Ansari, Q. H. ;
Yao, J. -C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5286-5302
[9]   HYBRID VISCOSITY EXTRAGRADIENT METHOD FOR SYSTEMS OF VARIATIONAL INEQUALITIES, FIXED POINTS OF NONEXPANSIVE MAPPINGS, ZERO POINTS OF ACCRETIVE OPERATORS IN BANACH SPACES [J].
Ceng, Lu-Chuan ;
Petrusel, Adrian ;
Yao, Jen-Chih ;
Yao, Yonghong .
FIXED POINT THEORY, 2018, 19 (02) :487-+
[10]   Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings [J].
Chidume, CE ;
Li, JL ;
Udomene, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) :473-480