Human action recognition using genetic algorithms and convolutional neural networks

被引:118
作者
Ijjina, Earnest Paul [1 ]
Chalavadi, Krishna Mohan [1 ]
机构
[1] Indian Inst Technol Hyderabad, Visual Learning & Intelligence Grp VIGIL, Dept Comp Sci & Engn, Hyderabad 502285, Telangana, India
关键词
Convolutional neural network (CNN); Genetic algorithms (GA); Human action recognition; Action bank features; SEARCH; STRATEGIES;
D O I
10.1016/j.patcog.2016.01.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an approach for human action recognition using genetic algorithms (GA) and deep convolutional neural networks (CNN) is proposed. We demonstrate that initializing the weights of a convolutional neural network (CNN) classifier based on solutions generated by genetic algorithms (GA) minimizes the classification error. A gradient descent algorithm is used to train the CNN classifiers (to find a local minimum) during fitness evaluations of GA chromosomes. The global search capabilities of genetic algorithms and the local search ability of gradient descent algorithm are exploited to find a solution that is closer to global-optimum. We show that combining the evidences of classifiers generated using genetic algorithms helps to improve the performance. We demonstrate the efficacy of the proposed classification system for human action recognition on UCF50 dataset. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:199 / 212
页数:14
相关论文
共 77 条
[1]   Human Activity Analysis: A Review [J].
Aggarwal, J. K. ;
Ryoo, M. S. .
ACM COMPUTING SURVEYS, 2011, 43 (03)
[2]  
[Anonymous], CoRR
[3]  
[Anonymous], CoRR
[4]  
[Anonymous], 2006, NIPS
[5]  
[Anonymous], 2011, LECT NOTES ARTIF INT, DOI DOI 10.1007/978-3-642-24412-4_3
[6]  
[Anonymous], 2012, PREDICTION CANDIDATE
[7]  
Baccouche Moez, 2011, Human Behavior Unterstanding. Proceedings Second International Workshop, HBU 2011, P29, DOI 10.1007/978-3-642-25446-8_4
[8]   Space-Time Robust Video Representation for Action Recognition [J].
Ballas, Nicolas ;
Yang, Yi ;
Lan, Zhen-zhong ;
Delezoide, Betrand ;
Preteux, Francoise ;
Hauptmann, Alex .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :2704-2711
[9]  
Bascom J., 1871, AM THEOL REV, V3, P349
[10]   LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT [J].
BENGIO, Y ;
SIMARD, P ;
FRASCONI, P .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02) :157-166