Supervised Classification for a Family of Gaussian Functional Models

被引:24
作者
Baillo, Amparo [1 ]
Cuevas, Antonio [1 ]
Antonio Cuesta-Albertos, Juan [2 ]
机构
[1] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Cantabria, Dept Matemat, Cantabria, Spain
关键词
discrimination; functional data; Gaussian processes; Radon-Nikodym derivative; SUPPORT;
D O I
10.1111/j.1467-9469.2011.00734.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the framework of supervised classification (discrimination) for functional data, it is shown that the optimal classification rule can be explicitly obtained for a class of Gaussian processes with 'triangular' covariance functions. This explicit knowledge has two practical consequences. First, the consistency of the well-known nearest neighbours classifier (which is not guaranteed in the problems with functional data) is established for the indicated class of processes. Second, and more important, parametric and non-parametric plug-in classifiers can be obtained by estimating the unknown elements in the optimal rule. The performance of these new plug-in classifiers is checked, with positive results, through a simulation study and a real data example.
引用
收藏
页码:480 / 498
页数:19
相关论文
共 40 条
[1]   On the kernel rule for function classification [J].
Abraham, C. ;
Biau, G. ;
Cadre, B. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (03) :619-633
[2]  
[Anonymous], 1997, Numerical analysis: An introduction
[3]  
[Anonymous], 1961, PACIFIC J MATH, DOI 10.2140/pjm.1961.11.751
[4]  
[Anonymous], 1968, VARIOUS PUBLICATIONS
[5]  
[Anonymous], 1973, Pattern Classification and Scene Analysis
[6]  
[Anonymous], OXFORD HDB FUNCTIONA
[7]  
Araujo A., 1980, CENTRAL LIMIT THEORE
[8]   Fast learning rates for plug-in classifiers [J].
Audibert, Jean-Yves ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2007, 35 (02) :608-633
[9]  
Berlinet A., 2004, REPRODUCING KERNEL H, DOI 10.1007/978-1-4419-9096-9
[10]   k-Nearest Neighbour method in functional nonparametric regression [J].
Burba, Florent ;
Ferraty, Frederic ;
Vieu, Philippe .
JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (04) :453-469