A recursive least squares implementation for adaptive beamforming under quadratic constraint

被引:8
|
作者
Tian, Z [1 ]
Bell, KL [1 ]
Van Trees, HL [1 ]
机构
[1] George Mason Univ, Ctr Excellence C3I, Fairfax, VA 22030 USA
来源
NINTH IEEE SIGNAL PROCESSING WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, PROCEEDINGS | 1998年
关键词
D O I
10.1109/SSAP.1998.739321
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quadratic constraints on the weight vector of an adaptive linearly constrained minimum power (LCMP) beamformer can improve robustness to pointing errors and to random perturbations in sensor parameters. In this paper, we propose a technique for implementing a quadratic inequality constraint with recursive least squares (RLS) updating. A variable diagonal loading term is added at each step, where the amount of loading is found from the solution to a quadratic equation. Simulations under different scenarios demonstrate that this algorithm outperforms both the RLS beamformer with no quadratic constraint, and the RLS beamformer using the scaled projection technique.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [21] A projection method for least squares problems with a quadratic equality constraint
    Zhang, ZY
    Huang, YS
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (01) : 188 - 212
  • [22] A robust fast recursive least squares adaptive algorithm
    Benesty, J
    Gänsler, T
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3785 - 3788
  • [23] Recursive least-squares lattice adaptive algorithm suitable for fixed-point implementation
    Paleologu, Constantin
    Enescu, Andrei Alexandru
    Ciochina, Silviu
    2006 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2006, : 1105 - 1108
  • [24] Order-recursive underdetermined recursive least-squares adaptive algorithms
    Baykal, B
    Constantinides, AG
    SIGNAL PROCESSING, 1997, 63 (03) : 241 - 247
  • [25] BLOCK IMPLEMENTATION OF A RECURSIVE LEAST-SQUARES ESTIMATION ALGORITHM
    IIGUNI, Y
    SAKAI, H
    TOKUMARU, H
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (10): : 1671 - 1675
  • [26] LEAST-SQUARES REGENERATIVE HYBRID ARRAY FOR ADAPTIVE BEAMFORMING
    YEH, CC
    WANG, WD
    CHAO, THS
    MAR, J
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1990, 38 (04) : 489 - 497
  • [27] Generalized adaptive weighted recursive least squares dictionary learning
    Naderahmadian, Yashar
    Tinati, Mohammad Ali
    Beheshti, Soosan
    SIGNAL PROCESSING, 2016, 118 : 89 - 96
  • [28] Adaptive Phasor Estimators based on Recursive Least-Squares
    Costa, F. F.
    dos Santos, R. C.
    Ferreira, R. R.
    Fernandes, D. A.
    de Almeida, L. A. L.
    Coury, D. V.
    2013 IEEE GRENOBLE POWERTECH (POWERTECH), 2013,
  • [29] ADAPTIVE ROBUST CONTROL OF HYDRAULIC ROBOTS WITH RECURSIVE LEAST SQUARES
    Wang, Longke
    Book, Wayne J.
    Huggins, James D.
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2009, PTS A AND B, 2010, : 1571 - 1578
  • [30] Projection-based robust adaptive beamforming with quadratic constraint
    Yi, Shanchao
    Wu, Ying
    Wang, Yunlong
    SIGNAL PROCESSING, 2016, 122 : 65 - 74