Optimal power flow by means of improved adaptive differential evolution

被引:124
作者
Li, Shuijia [1 ]
Gong, Wenyin [1 ]
Wang, Ling [2 ]
Yan, Xuesong [1 ]
Hu, Chengyu [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[2] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal power flow; Adaptive differential evolution; Constrained optimization; Power system; PARTICLE SWARM OPTIMIZATION; ALGORITHM; EMISSION; COST; NONSMOOTH; CONSTRAINTS; POLLUTION; OPF;
D O I
10.1016/j.energy.2020.117314
中图分类号
O414.1 [热力学];
学科分类号
摘要
Optimal power flow (OPF) problem is a large-scale, non-convex, multi-modal, and non-linear constrained optimization problem, which has been widely used in power system operation. Because of these features, solving the OPF problem is a very popular and challenging task in power system optimization. In recent years, many advanced optimization methods are employed to deal with the OPF problem. However, most of these methods are unconstrained. In this paper, an enhanced adaptive differential evolution (JADE) with self-adaptive penalty constraint handling technique, referred to as EJADE-SP, is proposed to obtain the optimal solution of the OPF problem. The EJADE-SP is an enhanced version of JADE, where four improvements are proposed to enhance the performance of JADE when solving the OPF problem: i) crossover rate (CR) sorting mechanism is introduced to allow individuals to inherit more good genes; ii) re-randomizing parameters (CR and scale factor F) to maintain the search efficiency and diversity; iii) dynamic population reduction strategy is used to accelerate convergence; and iv) self-adaptive penalty constraint handling technique is integrated to deal with the constraints. To verify the effectiveness of the proposed method, it is applied to the OPF problem on a modified IEEE 30-bus test system, which combines stochastic wind energy and solar energy with conventional thermal power generators. The simulation results demonstrate that the proposed approach can be an effective alternative for the OPF problem. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Optimal power flow using particle swarm optimization [J].
Abido, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2002, 24 (07) :563-571
[2]   Optimal power flow using differential evolution algorithm [J].
Abou El Ela, A. A. ;
Abido, M. A. ;
Spea, S. R. .
ELECTRIC POWER SYSTEMS RESEARCH, 2010, 80 (07) :878-885
[3]   KEEL: a software tool to assess evolutionary algorithms for data mining problems [J].
Alcala-Fdez, J. ;
Sanchez, L. ;
Garcia, S. ;
del Jesus, M. J. ;
Ventura, S. ;
Garrell, J. M. ;
Otero, J. ;
Romero, C. ;
Bacardit, J. ;
Rivas, V. M. ;
Fernandez, J. C. ;
Herrera, F. .
SOFT COMPUTING, 2009, 13 (03) :307-318
[4]  
[Anonymous], 2002, POWER ENG REV IEEE
[5]   Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques [J].
Biswas, Partha P. ;
Suganthan, P. N. ;
Mallipeddi, R. ;
Amaratunga, Gehan A. J. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 68 :81-100
[6]   Optimal power flow solutions incorporating stochastic wind and solar power [J].
Biswas, Partha P. ;
Suganthan, P. N. ;
Amaratunga, Gehan A. J. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 148 :1194-1207
[7]   Optimal power flow using Teaching-Learning-Based Optimization technique [J].
Bouchekara, H. R. E. H. ;
Abido, M. A. ;
Boucherma, M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2014, 114 :49-59
[8]  
Burchett R., 1984, IEEE POWER ENG REV, VPER-103, P34, DOI DOI 10.1109/MPER.1984.5526513
[9]   Hierarchical ensemble of Extreme Learning Machine [J].
Cai, Yaoming ;
Liu, Xiaobo ;
Zhang, Yongshan ;
Cai, Zhihua .
PATTERN RECOGNITION LETTERS, 2018, 116 :101-106
[10]  
Carpentier J., 1962, B SOC FRANCAISE ELEC, V3, P431