Design and analysis of a super wideband (0.09-30.14 THz) graphene based log periodic dipole array antenna for terahertz applications

被引:22
作者
Krishna, Ch Murali [1 ]
Das, Sudipta [2 ]
Lakrit, Soufian [3 ]
Lavadiya, Sunil [4 ]
Madhav, Boddapati Taraka Phani [5 ]
Sorathiya, Vishal [4 ]
机构
[1] Indian Inst Informat Technol Design & Mfg, Dept Elect & Commun Engn, Jabalpur, MP, India
[2] IMPS Coll Engn & Technol, Dept Elect & Commun Engn, Malda, W Bengal, India
[3] Mohammed First Univ, EST Nador, Appl Math & Informat Syst Lab, Oujda, Morocco
[4] Marwadi Univ, Dept Informat & Commun Technol, Rajkot 360002, Gujarat, India
[5] Koneru Lakshmaiah Educ Fdn, Dept Elect & Commun Engn, Guntur, AP, India
来源
OPTIK | 2021年 / 247卷
关键词
Log periodic dipole array (LPDA); Protrudent strip; Super wideband; Peak gain; Radiation efficiency; THz applications; MICROSTRIP PATCH ANTENNA; PHOTONIC CRYSTAL;
D O I
10.1016/j.ijleo.2021.167991
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A micro-scaled printed log periodic dipole array (LPDA) antenna is proposed for terahertz (THz) applications. The proposed low profile graphene conductor based LPDA antenna is designed with integrated protudent dipoles to realize super wide bandwidth and high gain characteristics. The suggested THz antenna is designed on a 10 mu m thick Rogers RT / Duroid 5880 (TM) substrate material of dimension 450 mu m x 500 mu m. The proposed antenna exhibits 2:1 VSWR operating super wide bandwidth (SWB) of 30050 GHz (0.09-30.14 THz) with a peak gain of 16.02 dBi. The designed antenna shows fractional bandwidth of 199.46% along with a huge bandwidth ratio of 334.88:1. The radiation efficiency balancing from 85% to 98.2% is maintained throughout the whole operating -10 dB SWB (0.09-30.14 THz). Design formulation of the proposed structure, structural parametric analysis, surface current distribution and characteristics parameters are discussed in detail in this paper. The proposed antenna covers the entire frequency band of the terahertz region to support a number of sub-terahertz and terahertz communication applications such as high speed short distance communication, video rate imaging, biomedical imaging, surveillance, mine detection, sensing, and security scanning.
引用
收藏
页数:11
相关论文
共 25 条
[1]   Ultra-wideband Hybrid PICA Terahertz Antenna for High-Resolution Biomedical Imaging [J].
Abohmra, Abdoalbaset ;
Kazim, Jalil ur Rehman ;
Imran, Muhammad Ali ;
Abbas, Hasan ;
Alomainy, Akram ;
Rehman, Masood Ur ;
Abbasi, Qammer H. .
2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, :1759-1760
[2]   Graphene nanoribbon based terahertz antenna on polyimide substrate [J].
Anand, S. ;
Kumar, D. Sriram ;
Wu, Ren Jang ;
Chavali, Murthy .
OPTIK, 2014, 125 (19) :5546-5549
[3]  
Balanis C., ANTENNA THEORY DESIG
[4]  
Budania J, 2020, OPT INT J LIGHT ELEC, V206, DOI [10.1016/j.ijleo.2019.163615, DOI 10.1016/J.IJLEO.2019.163615]
[5]  
Carrel R., 1961, IRE International Convention Record, P61
[6]   THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications [J].
Dhillon, Amarveer Singh ;
Mittal, Divesh ;
Sidhu, Ekambir .
OPTIK, 2017, 144 :634-641
[7]  
Elayan H., 2018, 2018 INT C ADV COMM, P1, DOI [DOI 10.1109/COMMNET.2018.8360286, 10.1109/COMMNET.2018.8360286]
[8]  
Ernesto Avila Navarro, 2008, THESIS U MIGEL
[9]  
He YJ, 2020, CHINA COMMUN, V17, P124, DOI 10.23919/J.CC.2020.07.011
[10]   Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals [J].
Hocini, A. ;
Temmar, M. N. ;
Khedrouche, D. ;
Zamani, M. .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2019, 36