Towards the Development of Rapid and Low-Cost Pathogen Detection Systems Using Microfluidic Technology and Optical Image Processing

被引:2
作者
Kerrouche, Abdelfateh [1 ]
Lithgow, Jordan [1 ]
Muhammad, Ilyas [1 ]
Romdhani, Imed [2 ]
机构
[1] Edinburgh Napier Univ, Sch Engn & Built Environm, Edinburgh EH10 5DT, Midlothian, Scotland
[2] Edinburgh Napier Univ, Sch Comp, Edinburgh EH10 5DT, Midlothian, Scotland
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
关键词
pathogen detection; microfluidics; image processing; computational algorithms;
D O I
10.3390/app10072527
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Waterborne pathogens affect all waters globally and proceed to be an ongoing concern. Previous methods for detection of pathogens consist of a high test time and a high sample consumption, but they are very expensive and require specialist operators. This study aims to develop a monitoring system capable of identifying waterborne pathogens with particular characteristics using a microfluidic device, optical imaging and a classification algorithm to provide low-cost and portable solutions. This paper investigates the detection of small size microbeads (1-5 mu m) from a measured water sample by using a cost-effective microscopic camera and computational algorithms. Results provide areas of opportunities to decrease sample consumption, reduce testing time and minimize the use of expensive equipment.
引用
收藏
页数:10
相关论文
共 23 条
[11]   Application of microfluidics in waterborne pathogen monitoring: A review [J].
Bridle, Helen ;
Miller, Brian ;
Desmulliez, Marc P. Y. .
WATER RESEARCH, 2014, 55 :256-271
[12]   A centrifugal microfluidics platform for potential application on immobilization-free bead-based immunoassays [J].
Chen, Qiu-lan ;
Cheung, Ka-lun ;
Kwan, Yiu-wa ;
Kong, Siu-kai ;
Ho, Ho-pui .
MICRO MANUFACTURING TECHNIQUES AND APPLICATIONS, 2013, 289 :39-+
[13]   New advances in microfluidic flow cytometry [J].
Gong, Yanli ;
Fan, Na ;
Yang, Xu ;
Peng, Bei ;
Jiang, Hai .
ELECTROPHORESIS, 2019, 40 (08) :1212-1229
[14]   Monitoring of drinking water quality using automated ATP quantification [J].
Hansen, C. B. ;
Kerrouche, A. ;
Tatari, K. ;
Rasmussen, A. ;
Ryan, T. ;
Summersgill, P. ;
Desmulliez, M. P. Y. ;
Bridle, H. ;
Albrechtsen, H. J. .
JOURNAL OF MICROBIOLOGICAL METHODS, 2019, 165
[15]   Megasonic sonication for cost-effective and automatable elution of Cryptosporidium from filters and membranes [J].
Kerrouche, Abdelfateh ;
Desmulliez, Marc P. Y. ;
Bridle, Helen .
JOURNAL OF MICROBIOLOGICAL METHODS, 2015, 118 :123-127
[16]   A survey for the applications of content-based microscopic image analysis in microorganism classification domains [J].
Li, Chen ;
Wang, Kai ;
Xu, Ning .
ARTIFICIAL INTELLIGENCE REVIEW, 2019, 51 (04) :577-646
[17]   A microfluidic system integrated with buried optical fibers for detection of Phalaenopsis orchid pathogens [J].
Lin, Chih-Lin ;
Chang, Wen-Hsin ;
Wang, Chih-Hung ;
Lee, Chia-Hwa ;
Chen, Tzong-Yueh ;
Jan, Fuh-Jyh ;
Lee, Gwo-Bin .
BIOSENSORS & BIOELECTRONICS, 2015, 63 :572-579
[18]   METHODS FOR CELL AND PARTICLE TRACKING [J].
Meijering, Erik ;
Dzyubachyk, Oleh ;
Smal, Ihor .
IMAGING AND SPECTROSCOPIC ANALYSIS OF LIVING CELLS: OPTICAL AND SPECTROSCOPIC TECHNIQUES, 2012, 504 :183-200
[19]   The intersection of flow cytometry with microfluidics and microfabrication [J].
Piyasena, Menake E. ;
Graves, Steven W. .
LAB ON A CHIP, 2014, 14 (06) :1044-1059
[20]   The origins and the future of microfluidics [J].
Whitesides, George M. .
NATURE, 2006, 442 (7101) :368-373