Nonlinear Optimal Control Design for Underactuated Two-Wheeled Inverted Pendulum Mobile Platform

被引:101
作者
Kim, Sangtae [1 ]
Kwon, SangJoo [1 ]
机构
[1] Korea Aerosp Univ, Sch Aerosp & Mech Engn, Goyang 412791, South Korea
基金
新加坡国家研究基金会;
关键词
Personal mobility; self-balancing robot; statedependent Riccati equation (SDRE) nonlinear control; two-wheeled inverted pendulum (TWIP); DEPENDENT RICCATI EQUATION; IMPLEMENTATION; ROBOT;
D O I
10.1109/TMECH.2017.2767085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In terms of the state-dependent Riccati equation (SDRE) control framework, a nonlinear motion control is investigated for the two-wheeled inverted pendulum (TWIP) mobile robot platform. As a critical design issue, the state dependent coefficient matrix is established based on the sound understanding of dynamic characteristics of the TWIP robot. The developed SDRE control solution has the merit of robust posture stabilization when the inverted pendulum robot experiences strong nonlinear behaviors due to abrupt external disturbances.
引用
收藏
页码:2803 / 2808
页数:6
相关论文
共 25 条
[1]  
Acar C., 2011, 2011 IEEE 20th International Symposium on Industrial Electronics (ISIE 2011), P2195, DOI 10.1109/ISIE.2011.5984501
[2]  
ANDERSON E., 1999, LAPACK USERSGUIDE, V3rd
[3]  
[Anonymous], P IFAC WORLD C SEOUL
[4]   Review of modelling and control of two-wheeled robots [J].
Chan, Ronald Ping Man ;
Stol, Karl A. ;
Halkyard, C. Roger .
ANNUAL REVIEWS IN CONTROL, 2013, 37 (01) :89-103
[5]   Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis [J].
Cimen, Tayfun .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2012, 35 (04) :1025-1047
[6]  
Cloutier JR, 1997, P AMER CONTR CONF, P932, DOI 10.1109/ACC.1997.609663
[7]  
Dang P, 2005, IEEE IND ELEC, P304
[8]   Design of a class of nonlinear controllers via State Dependent Riccati Equations [J].
Erdem, EB ;
Alleyne, AG .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2004, 12 (01) :133-137
[9]  
Erdem EB, 2001, IEEE DECIS CONTR P, P2986, DOI 10.1109/CDC.2001.980731
[10]   The rigid-flexible nonlinear robotic manipulator: Modeling and control [J].
Fenili, Andre ;
Balthazar, Jose Manoel .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (05) :2332-2341