Transitivity and variational principles

被引:1
作者
Pasicki, Lech [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
Transitive relation; Kuratowski lemma; Cauchy sequence; Variational principle; Fixed point;
D O I
10.1016/j.na.2011.05.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply an order reasoning to mappings satisfying the triangle inequality. This general approach yields the Ekeland's variational principle as one of the consequences. In addition we obtain an extension of the Brondsted variational principle and of the Takahashi fixed point theorem. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5678 / 5684
页数:7
相关论文
共 13 条
[1]  
ALTMAN M, 1981, NONLINEAR ANAL, V6, P157
[2]   GENERAL PRINCIPLE ON ORDERED SETS IN NONLINEAR FUNCTIONAL-ANALYSIS [J].
BREZIS, H ;
BROWDER, FE .
ADVANCES IN MATHEMATICS, 1976, 21 (03) :355-364
[3]   LEMMA OF BISHOP AND PHELPS [J].
BRONDSTED, A .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 55 (02) :335-341
[4]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[5]  
DANCS S, 1983, ACTA SCI MATH, V46, P381
[6]   On some nonlinear problems induced by an abstract maximal element principle [J].
Du, Wei-Shih .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) :391-399
[8]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[9]   On the order-theoretic Cantor theorem [J].
Granas, A ;
Horvath, CD .
TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02) :203-213
[10]  
Kada O., 1996, Math Japon, V44, P381