Magnetohydrodynamics (MHD) stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous medium

被引:55
作者
Khashi'ie, Najiyah Safwa [1 ,2 ]
Arifin, Norihan Md [1 ,3 ]
Rashidi, Mohammad Mehdi [4 ,5 ]
Hafidzuddin, Ezad Hafidz [6 ]
Wahi, Nadihah [3 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor, Malaysia
[2] Univ Tekn Malaysia, Fak Teknol Kejuruteraan Mekanikal & Pembuatan, Durian Tunggal 76100, Melaka, Malaysia
[3] Univ Putra Malaysia, Dept Math, Fac Sci, Upm Serdang 43400, Selangor, Malaysia
[4] Tongji Univ, Shanghai Automot Wind Tunnel Ctr, Shanghai 201804, Peoples R China
[5] Tongji Univ, Shanghai Key Lab Vehicle Aerodynam & Vehicle Ther, Shanghai 201804, Peoples R China
[6] Univ Putra Malaysia, Ctr Fdn Studies Agr Sci, Serdang 43400, Selangor, Malaysia
关键词
Stagnation point flow; Stretching; shrinking sheet; Magnetohydrodynamics; Double stratification; Porous medium; Dual solutions; BOUNDARY-LAYER-FLOW; PERMEABLE SHRINKING SHEET; HEAT-TRANSFER; MIXED CONVECTION; STRETCHING SHEET; VERTICAL SURFACE; NANOFLUID; UNIFORM; PLATE; FLUID;
D O I
10.1007/s10973-019-08713-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
The present work emphasizes the MHD mixed convective stagnation point flow over a shrinking/stretching surface saturated in a porous medium. The double stratification with heat source effects are also considered while the magnetic field is imposed normal to the sheet. The governing model (partial differential equations) is converted into a system of ordinary (similarity) differential equations using similarity transformations. The boundary value problem solver (bvp4c) in the MATLAB software is utilized for the numerical computations. Numerical results are graphically illustrated in the form of velocity, temperature and concentration profiles for several values of buoyancy, magnetic, thermal and solutal stratification parameters. The graphs of skin friction coefficient, local Nusselt and Sherwood numbers portray that the dual solutions are achievable within a certain range of the buoyancy and velocity ratio parameters. Both assisting and opposing flow cases can generate two solutions, whereas the forced convective flow only produces a unique solution. The execution of stability analysis affirms the reliability of the first solution. Both heat and mass transfer rates intensify with the increment of the velocity ratio parameter for all type of convective flows. The fluid temperature and concentration decrease with the increment of the thermal and solutal stratification parameters, respectively, whereas the magnetic and buoyancy parameters reduce both temperature and concentration profiles.
引用
收藏
页码:3635 / 3648
页数:14
相关论文
共 54 条
[1]   Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo-Fabrizio and Atangana-Baleanu fractional derivatives embedded in porous medium [J].
Abro, Kashif Ali ;
Chandio, Ali Dad ;
Abro, Irfan Ali ;
Khan, Ilyas .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (04) :2197-2207
[2]   Magnetohydrodynamic Boundary Layer Flow Over an Exponentially Stretching Sheet Past a Porous Medium with Uniform Heat Source [J].
Baag, S. ;
Mishra, S. R. ;
Hoque, Mohammad Mainul ;
Anika, Nisat Nowroz .
JOURNAL OF NANOFLUIDS, 2018, 7 (03) :570-576
[3]   Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet [J].
Bhattacharyya, Krishnendu ;
Mukhopadhyay, Swati ;
Layek, G. C. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (1-3) :308-313
[4]   A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD [J].
Bhatti, M. M. ;
Abbas, M. Ali ;
Rashidi, M. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 316 :381-389
[5]   Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet [J].
Bhatti, M. M. ;
Rashidi, M. M. .
JOURNAL OF MOLECULAR LIQUIDS, 2016, 221 :567-573
[6]  
Bhatti M. M., 2017, Int. J. Appl. Comput. Math., V3, P2275, DOI [10.1007/s40819-016-0193-4, DOI 10.1007/S40819-016-0193-4]
[7]   Dissipation effect on MHD mixed convection flow over a stretching sheet through porous medium with non-uniform heat source/sink [J].
Bhukta, D. ;
Dash, G. C. ;
Mishra, S. R. ;
Baag, S. .
AIN SHAMS ENGINEERING JOURNAL, 2017, 8 (03) :353-361
[8]   Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid [J].
Borrelli, A. ;
Giantesio, G. ;
Patria, M. C. ;
Rosca, N. C. ;
Rosca, A. V. ;
Pop, I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 :1-13
[9]   Numerical modeling and optimization of thermal stratification in solar hot water storage tanks for domestic applications: CFD study [J].
Bouhal, T. ;
Fertahi, S. ;
Agrouaz, Y. ;
El Rhafiki, T. ;
Kousksou, T. ;
Jamil, A. .
SOLAR ENERGY, 2017, 157 :441-455
[10]   Free convection on a vertical plate with uniform and constant heat flux in a thermally stratified micropolar fluid [J].
Chang, Cheng-Long ;
Lee, Zong-Yi .
MECHANICS RESEARCH COMMUNICATIONS, 2008, 35 (06) :421-427