Conformal prediction based active learning by linear regression optimization

被引:4
作者
Matiz, Sergio [1 ]
Barner, Kenneth E. [1 ]
机构
[1] Univ Delaware, Dept Elect & Comp Engn, 140 Evans Hall, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
Conformal prediction; Active learning; Linear regression; Image classification; SUPPORT VECTOR MACHINES; FACE RECOGNITION; CLASSIFICATION; MODELS; ROBUST;
D O I
10.1016/j.neucom.2020.01.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conformal prediction uses the degree of strangeness (nonconformity) of data instances to determine the confidence values of new predictions. We propose a conformal prediction based active learning algorithm, referred to as CPAL-LR, to improve the performance of pattern classification algorithms. CPAL-LR uses a novel query function that determines the relevance of unlabeled instances through the solution of a constrained linear regression model, incorporating uncertainty, diversity, and representativeness in the optimization problem. Furthermore, we present a nonconformity measure that produces reliable confidence values. CPAL-LR is implemented in conjunction with support vector machines, sparse coding algorithms, and convolutional networks. Experiments conducted on face and object recognition databases demonstrate that CPAL-LR improves the classification performance of a variety classifiers, outperforming previously proposed active learning techniques, while producing reliable confidence values. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 169
页数:13
相关论文
共 56 条
  • [51] Xu Z, 2003, LECT NOTES COMPUT SC, V2633, P393
  • [52] Paging scheme under delay bounds for LEO networks
    Xu, Zhang
    Zhu, Li-Dong
    Wu, Shi-Qi
    [J]. 2007 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEMS; VOL 2: SIGNAL PROCESSING, COMPUTATIONAL INTELLIGENCE, CIRCUITS AND SYSTEMS, 2007, : 249 - 252
  • [53] Yang JC, 2009, PROC CVPR IEEE, P1794, DOI 10.1109/CVPRW.2009.5206757
  • [54] Discriminative analysis-synthesis dictionary learning for image classification
    Yang, Meng
    Chang, Heyou
    Luo, Weixin
    [J]. NEUROCOMPUTING, 2017, 219 : 404 - 411
  • [55] Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding
    Zhang, Lefei
    Zhang, Qian
    Zhang, Liangpei
    Tao, Dacheng
    Huang, Xin
    Du, Bo
    [J]. PATTERN RECOGNITION, 2015, 48 (10) : 3102 - 3112
  • [56] Zhang L, 2012, IEEE T GEOSCI REMOTE, V50, P3202, DOI [10.1109/TGRS.2011.2180392, 10.1109/TGRS.2012.2197860]