Subadditivity of Value-at-Risk for Bernoulli random variables

被引:0
|
作者
Hofert, Marius [1 ]
McNeil, Alexander J. [2 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
[2] Heriot Watt Univ, Dept Actuarial Math & Stat, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
Risk measure; Value-at-Risk; Superadditivity; Bernoulli random variables; Portfolio of bonds;
D O I
10.1016/j.spl.2014.12.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Necessary and sufficient conditions for the subadditivity of Value-at-Risk (VaR(alpha)) for portfolios of bonds are presented under various dependence assumptions. For sufficiently large alpha, VaR(alpha) is subadditive. However, for any alpha one can construct portfolios for which VaR(alpha) is superadditive. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 50 条
  • [1] Asymptotic subadditivity/superadditivity of Value-at-Risk under tail dependence
    Zhu, Wenhao
    Li, Lujun
    Yang, Jingping
    Xie, Jiehua
    Sun, Liulei
    MATHEMATICAL FINANCE, 2023, 33 (04) : 1314 - 1369
  • [2] Approximations of value-at-risk as an extreme quantile of a random sum of heavy-tailed random variables
    Hannah, Lincoln
    Puza, Borek
    JOURNAL OF OPERATIONAL RISK, 2015, 10 (02): : 1 - 21
  • [3] Concentration inequality of sums of dependent subexponential random variables and application to bounds for value-at-risk
    Tanoue, Yuta
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (09) : 3123 - 3142
  • [4] A random-fuzzy portfolio selection DEA model using value-at-risk and conditional value-at-risk
    Shiraz, Rashed Khanjani
    Tavana, Madjid
    Fukuyama, Hirofumi
    SOFT COMPUTING, 2020, 24 (22) : 17167 - 17186
  • [5] A random-fuzzy portfolio selection DEA model using value-at-risk and conditional value-at-risk
    Rashed Khanjani Shiraz
    Madjid Tavana
    Hirofumi Fukuyama
    Soft Computing, 2020, 24 : 17167 - 17186
  • [6] Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk
    Liu, Haiyan
    Mao, Tiantian
    INSURANCE MATHEMATICS & ECONOMICS, 2022, 107 : 393 - 417
  • [7] Uncertain random portfolio optimization models based on value-at-risk
    Qin, Zhongfeng
    Dai, Yuanzhen
    Zheng, Haitao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (06) : 4523 - 4531
  • [8] Robust Value-at-Risk Optimization with Interval Random Uncertainty Set
    Chen, Wei
    Tan, Shaohua
    22ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2010), PROCEEDINGS, VOL 1, 2010,
  • [9] Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review
    Hong, L. Jeff
    Hu, Zhaolin
    Liu, Guangwu
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2014, 24 (04):
  • [10] Diversification and Value-at-Risk
    Perignon, Christophe
    Smith, Daniel R.
    JOURNAL OF BANKING & FINANCE, 2010, 34 (01) : 55 - 66