The hidden potential of call detail records in The Gambia

被引:6
作者
Arai, Ayumi [1 ]
Knippenberg, Erwin [2 ]
Meyer, Moritz [2 ]
Witayangkurn, Apichon [1 ]
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Tokyo, Japan
[2] World Bank, 1818 H St NW, Washington, DC 20433 USA
来源
DATA & POLICY | 2021年 / 3卷
基金
日本学术振兴会;
关键词
call detail records; COVID-19; crisis response; data privacy; developing countries; HUMAN MOBILITY; IMPACT;
D O I
10.1017/dap.2021.7
中图分类号
C93 [管理学]; D035 [国家行政管理]; D523 [行政管理]; D63 [国家行政管理];
学科分类号
12 ; 1201 ; 1202 ; 120202 ; 1204 ; 120401 ;
摘要
Aggregated data from mobile network operators (MNOs) can provide snapshots of population mobility patterns in real time, generating valuable insights when other more traditional data sources are unavailable or out-of-date. The COVID-19 pandemic has highlighted the value of remotely-collected, high-frequency, localized data in inferring the economic impact of shocks to inform decision-making. However, proper protocols must be put in place to ensure end-to-end user-confidentiality and compliance with international best practice. We demonstrate how to build such a data pipeline, channeling data from MNOs through the national regulator to the analytical users, who in turn produce policy-relevant insights. The aggregated indicators analyzed offer a detailed snapshot of the decrease in mobility and increased out-migration from urban to rural areas during the COVID-19 lockdown. Recommendations based on lessons learned from this process can inform engagements with other regulators in creating data pipelines to inform policy-making.
引用
收藏
页数:18
相关论文
共 26 条
  • [1] Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones
    Ahas, Rein
    Silm, Siiri
    Jarv, Olle
    Saluveer, Erki
    Tiru, Margus
    [J]. JOURNAL OF URBAN TECHNOLOGY, 2010, 17 (01) : 3 - 27
  • [2] Non-pharmaceutical public health interventions for pandemic influenza: an evaluation of the evidence base
    Aledort, Julia E.
    Lurie, Nicole
    Wasserman, Jeffrey
    Bozzette, Samuel A.
    [J]. BMC PUBLIC HEALTH, 2007, 7 (1)
  • [3] [Anonymous], FLOWMINDER COVID 19
  • [4] Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti
    Bengtsson, Linus
    Lu, Xin
    Thorson, Anna
    Garfield, Richard
    von Schreeb, Johan
    [J]. PLOS MEDICINE, 2011, 8 (08)
  • [5] Predicting poverty and wealth from mobile phone metadata
    Blumenstock, Joshua
    Cadamuro, Gabriel
    On, Robert
    [J]. SCIENCE, 2015, 350 (6264) : 1073 - 1076
  • [6] Estimating Economic Characteristics with Phone Data
    Blumenstock, Joshua E.
    [J]. AEA PAPERS AND PROCEEDINGS, 2018, 108 : 72 - 76
  • [7] Urban Sensing Using Mobile Phone Network Data: A Survey of Research
    Calabrese, Francesco
    Ferrari, Laura
    Blondel, Vincent D.
    [J]. ACM COMPUTING SURVEYS, 2015, 47 (02)
  • [8] Estimating Origin-Destination Flows Using Mobile Phone Location Data
    Calabrese, Francesco
    Di Lorenzo, Giusy
    Liu, Liang
    Ratti, Carlo
    [J]. IEEE PERVASIVE COMPUTING, 2011, 10 (04) : 36 - 44
  • [9] The promises of big data and small data for travel behavior (aka human mobility) analysis
    Chen, Cynthia
    Ma, Jingtao
    Susilo, Yusak
    Liu, Yu
    Wang, Menglin
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2016, 68 : 285 - 299
  • [10] Dynamic population mapping using mobile phone data
    Deville, Pierre
    Linard, Catherine
    Martin, Samuel
    Gilbert, Marius
    Stevens, Forrest R.
    Gaughan, Andrea E.
    Blondel, Vincent D.
    Tatem, Andrew J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (45) : 15888 - 15893