Hamiltonian action of spinning particle with gravimagnetic moment

被引:1
作者
Deriglazov, Alexei A. [1 ,2 ]
Ramirez, W. Guzman [1 ]
机构
[1] Univ Fed Juiz de Fora, ICE, Dept Matemat, Juiz De Fora, MG, Brazil
[2] Tomsk Polytech Univ, Phys Math Lab, Lenin Ave 30, Tomsk 634050, Russia
来源
XXIII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-23) | 2016年 / 670卷
关键词
D O I
10.1088/1742-6596/670/1/012020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment kappa. For kappa = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. kappa = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v -> c.
引用
收藏
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 2010, CLASSICAL MECH HAMIL
[2]  
Balakin AB, 2015, ARXIV150906058GRQC
[3]  
Deriglazov AA, 2015, ARXIV150905357GRQC
[4]   World-line geometry probed by fast spinning particle [J].
Deriglazov, Alexei A. ;
Ramirez, Walberto Guzman .
MODERN PHYSICS LETTERS A, 2015, 30 (21)
[5]   Lagrangian for the Frenkel electron [J].
Deriglazov, Alexei A. .
PHYSICS LETTERS B, 2014, 736 :278-282
[6]   Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable [J].
Deriglazov, Alexei A. ;
Pupasov-Maksimov, Andrey M. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10
[7]  
Dirac P. A. M., 1964, LECTURES ON QUANTUM
[8]   COVARIANT MULTIPOLE FORMALISM FOR EXTENDED TEST BODIES IN GENERAL RELATIVITY [J].
DIXON, WG .
NUOVO CIMENTO, 1964, 34 (02) :317-+
[9]   Electro dynamics of the rotating electron [J].
Frenkel, J .
ZEITSCHRIFT FUR PHYSIK, 1926, 37 (4/5) :243-262
[10]  
Gitman D.M., 1990, Quantization of Fields with Constraints