TOD: Transprecise Object Detection to Maximise Real-Time Accuracy on the Edge

被引:13
作者
Lee, JunKyu [1 ]
Varghese, Blesson [1 ]
Woods, Roger [1 ]
Vandierendonck, Hans [1 ]
机构
[1] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast, Antrim, North Ireland
来源
5TH IEEE INTERNATIONAL CONFERENCE ON FOG AND EDGE COMPUTING (ICFEC 2021) | 2021年
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
D O I
10.1109/ICFEC51620.2021.00015
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Real-time video analytics on the edge is challenging as the computationally constrained resources typically cannot analyse video streams at full fidelity and frame rate, which mutts in loss of accuracy. This paper proposes a Transprecise Object Detector (TOD) which maximises the real-time object detection accuracy on an edge deuce by selecting an appropriate Deep Neural Network (DNN) on the fly with negligible computational overhead. TOD makes two key contributions over the state of the art: (1) TOD leverages characteristics of the video stream such as object sire and speed of movement to identify networks with high prediction accuracy for the current frames; (2) it selects the best-performing network based on projected accuracy and computational demand using an effective and low-overhead decision mechanism. Experimental evaluation on a jetson Nano demonstrates that TOD improves the average object detection precision by 34.7% over the YOLOv4-tiny-288 model on average over the MOTI7Det dataset. In the MOT17-05 test dataset. TOD utilises nub, 45.1% of GPU resource and 62.7% of the GPU board power without losing accuracy, compared to YOLOv4-416 model, We expect that TOD will maximise the application of edge devices to real-time object detection, since TOD maximises real-time object detection accuracy Oven edge devices according to dynamic input features without increasing inference latency in practice.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 15 条
[1]  
Ali M., 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, P1, DOI [DOI 10.1109/ICCCEEE.2018.8515785, 10.1109/ICCCEEE.2018.8515785]
[2]  
Ananthanarayanan G., 2019, P 17 ANN INT C MOB S, P695, DOI DOI 10.1145/3307334.3328589
[3]   Crosstalk Cascades for Frame-Rate Pedestrian Detection [J].
Dollar, Piotr ;
Appel, Ron ;
Kienzle, Wolf .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :645-659
[4]   Speed/accuracy trade-offs for modern convolutional object detectors [J].
Huang, Jonathan ;
Rathod, Vivek ;
Sun, Chen ;
Zhu, Menglong ;
Korattikara, Anoop ;
Fathi, Alireza ;
Fischer, Ian ;
Wojna, Zbigniew ;
Song, Yang ;
Guadarrama, Sergio ;
Murphy, Kevin .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3296-+
[5]   Chameleon: Scalable Adaptation of Video Analytics [J].
Jiang, Junchen ;
Ananthanarayanan, Ganesh ;
Bodik, Peter ;
Sen, Siddhartha ;
Stoica, Ion .
PROCEEDINGS OF THE 2018 CONFERENCE OF THE ACM SPECIAL INTEREST GROUP ON DATA COMMUNICATION (SIGCOMM '18), 2018, :253-266
[6]  
Kohavi R., 1995, IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, P1137
[7]  
Korshunov P, 2010, LECT NOTES COMPUT SC, V5916, P454, DOI 10.1007/978-3-642-11301-7_46
[8]  
Leal-Taix L., 2015, MOTCHALLENGE 2015 BE
[9]   AIR: Iterative refinement acceleration using arbitrary dynamic precision [J].
Lee, JunKyu ;
Peterson, Gregory D. ;
Nikolopoulos, Dimitrios S. ;
Vandierendonck, Hans .
PARALLEL COMPUTING, 2020, 97
[10]   Energy-Efficient Iterative Refinement Using Dynamic Precision [J].
Lee, JunKyu ;
Vandierendonck, Hans ;
Arif, Mahwish ;
Peterson, Gregory D. ;
Nikolopoulose, Dimitrios S. .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2018, 8 (04) :722-735