Determining the linewidth enhancement factor via optical feedback in quantum dot micropillar lasers

被引:6
作者
Holzinger, Steffen [1 ]
Kreinberg, Soeren [1 ]
Hokr, Brett H. [2 ]
Schneider, Christian [3 ]
Hoefling, Sven [3 ,4 ]
Chow, Weng W. [5 ]
Porte, Xavier [1 ]
Reitzenstein, Stephan [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, Quantum Devices Grp, Hardenbergstr 36, D-10623 Berlin, Germany
[2] US Army Space & Missile Def Command, Huntsville, AL USA
[3] Univ Wurzburg, Tech Phys, D-97074 Wurzburg, Germany
[4] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
[5] Sandia Natl Labs, Albuquerque, NM 87185 USA
来源
OPTICS EXPRESS | 2018年 / 26卷 / 24期
基金
欧洲研究理事会;
关键词
SEMICONDUCTOR-LASERS; BROADENING FACTOR; INJECTION; DYNAMICS; REGIMES; ALPHA;
D O I
10.1364/OE.26.031363
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The linewidth enhancement factor alpha is a key parameter determining the spectral and dynamical behavior of semiconductor lasers. Here, we propose and demonstrate a method for determining this parameter based on a direct measurement of variations in the laser gain and emission spectrum when subject to delayed optical feedback. We then use our approach to determine the pump current dependent linewidth enhancement factor of a high-beta quantum dot micropillar laser. The validity of our approach is confirmed comparing it to two conventional methods, one based on the comparison of the linewidths above and below threshold and the other based on injection locking properties. Furthermore, the pump power dependence of alpha is quantitatively described by simulations based on a quantum-optical model. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:31363 / 31371
页数:9
相关论文
共 41 条
  • [1] DEFINITION OF A LASER THRESHOLD
    BJORK, G
    KARLSSON, A
    YAMAMOTO, Y
    [J]. PHYSICAL REVIEW A, 1994, 50 (02): : 1675 - 1680
  • [2] Electrically driven high-Q quantum dot-micropillar cavities
    Boeckler, C.
    Reitzenstein, S.
    Kistner, C.
    Debusmann, R.
    Loeffler, A.
    Kida, T.
    Hoefling, S.
    Forchel, A.
    Grenouillet, L.
    Claudon, J.
    Gerard, J. M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (09)
  • [3] Emission properties of nanolasers during the transition to lasing
    Chow, Weng W.
    Jahnke, Frank
    Gies, Christopher
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2014, 3 : e201 - e201
  • [4] On the physics of semiconductor quantum dots for applications in lasers and quantum optics
    Chow, Weng W.
    Jahnke, Frank
    [J]. PROGRESS IN QUANTUM ELECTRONICS, 2013, 37 (03) : 109 - 184
  • [5] Self-validating technique for the measurement of the linewidth enhancement factor in semiconductor lasers
    Consoli, Antonio
    Bonilla, Borja
    Tijero, Jose Manuel G.
    Esquivias, Ignacio
    [J]. OPTICS EXPRESS, 2012, 20 (05): : 4979 - 4987
  • [6] SIMPLE MEASUREMENT OF FIBER DISPERSION AND OF CHIRP PARAMETER OF INTENSITY-MODULATED LIGHT EMITTER
    DEVAUX, F
    SOREL, Y
    KERDILES, JF
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1993, 11 (12) : 1937 - 1940
  • [7] FUNDAMENTAL LINE BROADENING OF SINGLE-MODE (GAAL)AS DIODE-LASERS
    FLEMING, MW
    MOORADIAN, A
    [J]. APPLIED PHYSICS LETTERS, 1981, 38 (07) : 511 - 513
  • [8] Experiments on the linewidth-enhancement factor of a vertical-cavity surface-emitting laser
    Fordell, Thomas
    Lindberg, Asa Marie
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 2007, 43 (01) : 6 - 15
  • [9] Giuliani G., 2005, 2005 European Quantum Electronics Conference (IEEE Cat. No. 05TH8796)
  • [10] Giuliani G., 2006, P SOC PHOTO-OPT INS, V6184