A Novel Frequency Band Selection Method for Common Spatial Pattern in Motor Imagery Based Brain Computer Interface

被引:0
作者
Sun, Gufei [1 ]
Hu, Jinglu [1 ]
Wu, Gengfeng [2 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Wakamatsu Ku, Hibikino 2-7, Kitakyushu, Fukuoka, Japan
[2] Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200041, Peoples R China
来源
2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 | 2010年
关键词
SINGLE-TRIAL EEG; FILTERS; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain-Computer Interface (BCI) is a system provides an alternative communication and control channel between the human brain and computer. In Motor Imagery-based (MI) BCI system, Common Spatial Pattern (CSP) is frequently used for extracting discriminative patterns from the electroencephalogram (EEG). There are many studies have proven that the performance of CSP has a very important relation with the choice of operational frequency band. As the fact that the CSP features at different frequency bands contain discriminative and complementary information for classification, this paper proposes a new frequency band selection method to nd the best frequency band set on which subject-speci cs CSP are complementary for MI classi cation. Compared to the performance offered by the existing method based on frequency band partition, the proposed algorithm can yield error rate reductions of 49.70% for the same BCI competition dataset.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Ang K. K., 2009, P 31 ANN INT C IEEE, P578
[2]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[3]  
[Anonymous], 2008, 30 ANN INT IEEE EMBS
[4]  
[Anonymous], P IEEE INT C ENG MED
[5]  
*BCI, 2005, BCI COMP 3
[6]   The non-invasive Berlin Brain-Computer Interface:: Fast acquisition of effective performance in untrained subjects [J].
Blankertz, Benjamin ;
Dornhege, Guido ;
Krauledat, Matthias ;
Mueller, Klaus-Robert ;
Curio, Gabriel .
NEUROIMAGE, 2007, 37 (02) :539-550
[7]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159
[8]   Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J].
Dornhege, G ;
Blankertz, B ;
Curio, G ;
Müller, KR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :993-1002
[9]   Combined optimization of spatial and temporal filters for improving brain-computer interfacing [J].
Dornhege, Guido ;
Blankertz, Benjamin ;
Krauledat, Matthias ;
Losch, Florian ;
Curio, Gabriel ;
Mueller, Klaus-Robert .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (11) :2274-2281
[10]   Clustering by passing messages between data points [J].
Frey, Brendan J. ;
Dueck, Delbert .
SCIENCE, 2007, 315 (5814) :972-976