Contralateral suppression of distortion-product otoacoustic emissions declines with age: A comparison of findings in CBA mice with human listeners

被引:74
作者
Jacobson, M
Kim, SH
Romney, J
Zhu, XX
Frisina, RD
机构
[1] Univ Rochester, Sch Med & Dent, Div Otolaryngol, Rochester, NY USA
[2] Univ Rochester, Sch Med & Dent, Dept Surg, Rochester, NY USA
[3] Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY USA
关键词
distortion product otoacoustic emissions; auditory efferents; age-related hearing loss; CBA mice; presbycusis;
D O I
10.1097/00005537-200310000-00009
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objectives/Hypothesis. The auditory efferent system plays presumed roles in enhancing signals in noise, maintaining the cochlea for optimal acoustic signal processing, and may have a protective role in preserving auditory function in the face of ototoxic events. The objective of the study was to measure age-related changes of the medial olivocochlear efferent system in mice by comparing distortion-product otoacoustic emissions generated with and without contralateral white noise stimulation. Consistent with prior work, distortion-product otoacoustic emissions were typically reduced in magnitude when white noise was presented to the contralateral ear. This contralateral suppression is attributed to activation of the medial olivocochlear efferent system, which has an inhibitory effect on the cochlear hair cell system. By studying contralateral suppression on cochlear output in subjects of different ages, it is possible to describe aging effects on the medial olivocochlear system. Study Design: CBA mice were divided into three age groups: young adult, middle-aged, and old-aged animals (21, 13, and 22 animals per group, respectively), and auditory brainstem. responses were obtained before distortion-product otoacoustic emission testing to assess overall hearing abilities. Methods. 2f1-f2 distortion-product otoacoustic emission recordings were obtained from individual subjects (anesthetized with ketamine/xylazine) in each age group under two conditions: 1) in quiet and 2) in the presence of a contralaterally applied wideband noise. Results. Principal findings were that distortionproduct otoacoustic emission levels decreased with age for mice in a way similar to humans, when correcting for the absolute difference in life spans. In addition, contralateral suppression declined in middle-aged and old-aged groups relative to the young adults for mice in a manner similar to humans. The contralateral suppression decline at low frequencies preceded that of the decline in distortion-product otoacoustic emissions with age. Conclusion: Functional decline of the medial olivocochlear efferent system with age precedes outer hair cell degeneration. Loss of medial olivocochlear suppressive function may play a role in the development of presbycusis in both clinical cases and animal models.
引用
收藏
页码:1707 / 1713
页数:7
相关论文
共 60 条
[1]   Maturation of medial efferent system function in humans [J].
Abdala, C ;
Ma, E ;
Sininger, YS .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1999, 105 (04) :2392-2402
[2]   Behavioral and neural measures of auditory temporal acuity in aging humans and mice [J].
Barsz, K ;
Ison, JR ;
Snell, KB ;
Walton, JP .
NEUROBIOLOGY OF AGING, 2002, 23 (04) :565-578
[3]   Age-related changes in GABAA receptor subunit composition and function in rat auditory system [J].
Caspary, DM ;
Holder, TM ;
Hughes, LF ;
Milbrandt, JC ;
McKernan, RM ;
Naritoku, DK .
NEUROSCIENCE, 1999, 93 (01) :307-312
[4]  
CASPARY DM, 1990, J NEUROSCI, V10, P2363
[5]   INFLUENCE OF AGING ON ACTIVE COCHLEAR MICROMECHANICAL PROPERTIES AND ON THE MEDIAL OLIVOCOCHLEAR SYSTEM IN HUMANS [J].
CASTOR, X ;
VEUILLET, E ;
MORGON, A ;
COLLET, L .
HEARING RESEARCH, 1994, 77 (1-2) :1-8
[6]   Speech recognition in noise and presbycusis: Relations to possible neural mechanisms [J].
Frisina, DR ;
Frisina, RD .
HEARING RESEARCH, 1997, 106 (1-2) :95-104
[7]  
Frisina DR, 2001, FUNCTIONAL NEUROBIOL, P565, DOI DOI 10.1016/B978-012351830-9/50041-X
[8]   Inputs to a physiologically characterized region of the inferior colliculus of the young adult CBA mouse [J].
Frisina, RD ;
Walton, JP ;
Lynch-Armour, MA ;
Byrd, JD .
HEARING RESEARCH, 1998, 115 (1-2) :61-81
[9]  
Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24
[10]  
FRISINA RD, 1908, FUNCTIONAL NEUROBIOL, P531