Multiple Solutions of Nonlinear Schrodinger Equation with the Fractional p-Laplacian

被引:4
作者
Luo, Huxiao [1 ]
Tang, Xianhua [1 ]
Li, Shengjun [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 05期
基金
中国国家自然科学基金;
关键词
fractional p-Laplacian; nonlinear Schrodinger equation; infinitely many solutions; fountain theorem; MAXWELL-DIRAC SYSTEM; SEMICLASSICAL SOLUTIONS; EXISTENCE;
D O I
10.11650/tjm/7947
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use two variant fountain theorems to prove the existence of infinitely many weak solutions for the following fractional p-Laplace equation (-Delta)(p)(alpha)u + V (x)vertical bar u vertical bar(p-2)u = f (x, u), x is an element of R-N, where N >= 2, p >= 2, alpha is an element of (0,1), (-Delta)(p)(alpha) is the fractional p-Laplacian and f is either asymptotically linear or subcritical p-superlinear growth. Under appropriate assumptions on V and f, we prove the existence of infinitely many nontrivial high or small energy solutions. Our results generalize and extend some existing results.
引用
收藏
页码:1017 / 1035
页数:19
相关论文
共 26 条
[1]   Gamma-convergence of nonlocal perimeter functionals [J].
Ambrosio, Luigi ;
De Philippis, Guido ;
Martinazzi, Luca .
MANUSCRIPTA MATHEMATICA, 2011, 134 (3-4) :377-403
[2]  
Applebaum D., 2004, NOT AM MATH SOC, V51, P1336
[3]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[4]   Nonlocal Minimal Surfaces [J].
Caffarelli, L. ;
Roquejoffre, J. -M. ;
Savin, O. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) :1111-1144
[5]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262
[8]   Multiple solutions of nonlinear Schrodinger equation with the fractional Laplacian [J].
Ge, Bin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 :236-247
[9]   Weyl-type laws for fractional p-eigenvalue problems [J].
Iannizzotto, Antonio ;
Squassina, Marco .
ASYMPTOTIC ANALYSIS, 2014, 88 (04) :233-245
[10]   1/2-Laplacian problems with exponential nonlinearity [J].
Iannizzotto, Antonio ;
Squassina, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) :372-385