Leader-following Consensus on Discrete Time Scales

被引:1
作者
Ostaszewska, Urszula [1 ]
Schmeidel, Ewa [1 ]
Zdanowicz, Malgorzata [1 ]
机构
[1] Univ Bialystok, Inst Math, Ul Ciolkowskiego 1M, PL-15245 Bialystok, Poland
来源
INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017) | 2018年 / 1978卷
关键词
time scales; leader-following problem; consensus; Growall's inequality;
D O I
10.1063/1.5044162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a leader-following consensus on discrete time scales is investigated. We propose and prove conditions ensuring a leader-following consensus on an arbitrary time scale. The presented results are illustrated by numerical examples.
引用
收藏
页数:4
相关论文
共 13 条
[1]  
Aulbach B., 1990, QUALITATIVE THEORY D
[2]   On Krause's Multi-Agent Consensus Model With State-Dependent Connectivity [J].
Blondel, Vincent D. ;
Hendrickx, Julien M. ;
Tsitsiklis, John N. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (11) :2586-2597
[3]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[4]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[5]   On the mathematics of emergence [J].
Cucker, Felipe ;
Smale, Steve .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :197-227
[6]   Emergent behavior in flocks [J].
Cucker, Felipe ;
Smale, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :852-862
[7]  
Girejko E., 2016, 21 INT C METH MOD AU
[8]   Krause's model of opinion dynamics on isolated time scales [J].
Girejko, Ewa ;
Machado, Luis ;
Malinowska, Agnieszka B. ;
Martins, Natalia .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) :5302-5314
[9]  
Hegselmann R, 2002, JASSS-J ARTIF SOC S, V5
[10]  
Krause U., 2000, COMUNICATIONS DIFFER